On higher moments of Dirichlet coefficients attached to symmetric square L-functions over certain sparse sequence

被引:0
|
作者
Hua, Guodong [1 ]
Chen, Bin [1 ]
Pan, Lijing [1 ]
Chen, Xiaofang [1 ]
机构
[1] Weinan Normal Univ, Sch Math & Stat, Weinan 714099, Shaanxi, Peoples R China
关键词
Fourier coefficients; Symmetric square L-function; Langlands program; FOURIER COEFFICIENTS; PLANCHEREL MEASURES; EULER PRODUCTS; CUSP FORMS; POWER SUMS; CLASSIFICATION; FUNCTORIALITY;
D O I
10.1007/s12215-023-00898-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let 2 <= j <= 8 be any fixed positive integer. Let f be a normalized primitive holomorphic cusp form of even integral weight for the full modular group Gamma = SL(2, Z). Denote by lambda(sym2f) (n) the nth normalized coefficient of the Dirichlet expansion of the symmetric square L-function L(sym(2)f, s) attached to f. In this paper, we are interested in the average behaviour of the following summatory function Sigma(a2 + b2 + c2 + d2 <= x) (4)((a,b,c,d)is an element of Z) lambda(j)(sym2f)(a(2) + b(2) + c(2) + d(2)) for x >= x(0) (sufficiently large), which improves and generalizes the recent works of Sharma and Sankaranarayanan (Res Number Theory 8:19, 2022, Rend Circ Mat Palermo II Ser 72:1399-1416, 2023).
引用
收藏
页码:4195 / 4208
页数:14
相关论文
共 50 条
  • [1] On higher moments of Dirichlet coefficients attached to symmetric square L-functions over certain sparse sequence
    Guodong Hua
    Bin Chen
    Lijing Pan
    Xiaofang Chen
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 4195 - 4208
  • [2] Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence
    A. Sharma
    A. Sankaranarayanan
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2023, 72 : 1399 - 1416
  • [3] Higher moments of the Fourier coefficients of symmetric square L-functions on certain sequence
    Sharma, A.
    Sankaranarayanan, A.
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1399 - 1416
  • [4] Discrete mean square of the coefficients of triple product L-functions over certain sparse sequence
    Hua, Guodong
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2022, 180
  • [5] Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers
    Sharma, Anubhav
    Sankaranarayanan, Ayyadurai
    [J]. RESEARCH IN NUMBER THEORY, 2022, 8 (01)
  • [6] Discrete mean square of the coefficients of symmetric square L-functions on certain sequence of positive numbers
    Anubhav Sharma
    Ayyadurai Sankaranarayanan
    [J]. Research in Number Theory, 2022, 8
  • [7] Coefficients of symmetric square L-functions
    Lau Yuk-Kam
    Liu JianYa
    Wu Jie
    [J]. SCIENCE CHINA-MATHEMATICS, 2010, 53 (09) : 2317 - 2328
  • [8] Coefficients of symmetric square L-functions
    Yuk-Kam Lau
    JianYa Liu
    Jie Wu
    [J]. Science China Mathematics, 2010, 53 : 2317 - 2328
  • [9] Coefficients of symmetric square L-functions
    LAU Yuk-Kam
    [J]. Science China Mathematics, 2010, 53 (09) : 2317 - 2328
  • [10] Oscillations of coefficients of symmetric square L-functions over primes
    Fei Hou
    [J]. Frontiers of Mathematics in China, 2015, 10 : 1325 - 1341