A Characterization of the Unit Ball by a Kahler-Einstein Potential

被引:1
|
作者
Choi, Young-Jun [1 ]
Lee, Kang-Hyurk [2 ,3 ]
Seo, Aeryeong [4 ,5 ]
机构
[1] Pusan Natl Univ, Dept Math, 2,Busandaehak Ro 63beon Gil, Pusan 46241, South Korea
[2] Gyeongsang Natl Univ, Dept Math, Jinju 52828, Gyeongnam, South Korea
[3] Gyeongsang Natl Univ, Res Inst Nat Sci, Jinju 52828, Gyeongnam, South Korea
[4] Kyungpook Natl Univ, Dept Math, 80,Daehak Ro, Daegu 41566, South Korea
[5] Kyungpook Natl Univ, RIRCM, 80,Daehak Ro, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
The Kahler-Einstein metric; Complete holomorphic vector fields; The unit ball; Automorphism groups; COMPLEX-MANIFOLDS; CURVATURE;
D O I
10.1007/s12220-022-01174-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We will show that a universal covering of a compact Kahler manifold with ample canonical bundle is the unit ball if it admits a global potential function of the Kahler-Einstein metric whose gradient length is a minimal constant. As an application, we will extend the Wong-Rosay theorem to a complex manifold without boundary.
引用
收藏
页数:18
相关论文
共 50 条