A primer on eigenvalue problems of non-self-adjoint operators

被引:1
|
作者
Kumar, Rakesh [1 ]
Hiremath, Kirankumar R. [1 ]
Manzetti, Sergio [2 ]
机构
[1] Indian Inst Technol Jodhpur, Dept Math, Jodhpur 342037, Rajasthan, India
[2] Linnaeus Univ, Fac Technol Math & Sci, S-35195 Vaxjo, Sweden
关键词
Non-self-adjoint operators; Pseudospectra; Complex eigenvalues; Finite number of eigenvalues; SPECTRAL PROPERTIES; COMPLEX; PSEUDOSPECTRA; TRANSFORMATION; RESONANCES; EXTENSION; VORTEX; NUMBER;
D O I
10.1007/s13324-024-00881-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Non-self adjoint operators describe problems in science and engineering that lack symmetry and unitarity. They have applications in convection-diffusion processes, quantum mechanics, fluid mechanics, optics, wave-guide theory, and other fields of physics. This paper reviews some important aspects of the eigenvalue problems of non-self-adjoint differential operators and discusses the spectral properties of various non-self-adjoint differential operators. Their eigenvalues can be computed for ground and perturbed states by their spectra and pseudospectra. This work also discusses the contemporary results on the finite number of eigenvalues of non-self-adjoint operators and the implications it brings in modeling physical problems.
引用
下载
收藏
页数:25
相关论文
共 50 条
  • [1] A primer on eigenvalue problems of non-self-adjoint operators
    Rakesh Kumar
    Kirankumar R. Hiremath
    Sergio Manzetti
    Analysis and Mathematical Physics, 2024, 14
  • [2] EIGENVALUE INCLUSION IN NON-SELF-ADJOINT EIGENVALUE PROBLEMS
    KLEIN, PP
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1990, 70 (06): : T560 - T562
  • [3] On eigenvalue accumulation for non-self-adjoint magnetic operators
    Sambou, Diomba
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (03): : 306 - 332
  • [4] TRANSFORMATION OF A CLASS OF NON-SELF-ADJOINT EIGENVALUE PROBLEMS
    RAO, DRKS
    MURTY, KN
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (02) : 287 - 292
  • [5] Eigenvalue enclosures and exclosures for non-self-adjoint problems in hydrodynamics
    Brown, B. Malcolm
    Langer, Matthias
    Marletta, Marco
    Tretter, Christiane
    Wagenhofer, Markus
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 : 65 - 81
  • [6] NON-SELF-ADJOINT EIGENVALUE PROBLEMS IN OSCILLATION-THEORY
    KELKEL, K
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1981, 61 (01): : 62 - 63
  • [7] EIGENVALUE BOUNDS FOR NON-SELF-ADJOINT SCHRODINGER OPERATORS WITH NONTRAPPING METRICS
    Guillarmou, Colin
    Hassell, Andrew
    Krupchyk, Katya
    ANALYSIS & PDE, 2020, 13 (06): : 1633 - 1670
  • [8] SELF-ADJOINT VARIATIONAL FORMULATION OF PROBLEMS HAVING NON-SELF-ADJOINT OPERATORS
    JENG, G
    WEXLER, A
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1978, 26 (02) : 91 - 94
  • [9] Eigenvalue problems for a non-self-adjoint Bessel-type operators in limit-point case
    Allahverdiev, Bilender P.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (18) : 2946 - 2951
  • [10] Robust error estimates for approximations of non-self-adjoint eigenvalue problems
    Giani, Stefano
    Grubisic, Luka
    Miedlar, Agnieszka
    Ovall, Jeffrey S.
    NUMERISCHE MATHEMATIK, 2016, 133 (03) : 471 - 495