A novel fractal model for effective thermal conductivity in granular porous media

被引:5
|
作者
Qin, Xuan [1 ]
Yin, Wanjun [1 ]
机构
[1] Guilin Univ Aerosp Technol, Sch Elect Informat & Automation, Guilin 541004, Peoples R China
关键词
Effective thermal conductivity; Fractal; Porous media; Porosity; PHYSICAL-PROPERTIES; GENERALIZED-MODEL; PERMEABILITY; BOUNDS;
D O I
10.1016/j.geothermics.2022.102625
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Quantitative prediction of effective thermal conductivity in porous media is very important in various industrial applications and scientific researches. As the topology and geometry characteristics of pore-solid space is extremely complicated, an accurately theoretical calculation in porous media is still a great challenge. In this study, a novel theoretical model of effective thermal conductivity is derived in granular porous media originated from the Laplace's Equation with a new boundary condition. The proposed model considers the size of solid particles following the fractal distribution characteristics, which is expressed as a function of porosity, fractal dimension of solid particle, maximum particle radius, representative length, and thermal conductivity of both solid particle and pore phase. The predictions of proposed model show a good agreement with the existing models and various published experimental data, which validates its accuracy and reliability. The effect of different geometrical parameters for proposed model is analyzed and discussed. This novel proposed model of effective thermal conductivity may reveal a better insight for thermophysical mechanisms in granular porous media than conventional models.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Analysis of the effective thermal conductivity of fractal porous media
    Huai, Xiulan
    Wang, Weiwei
    Li, Zhigang
    [J]. APPLIED THERMAL ENGINEERING, 2007, 27 (17-18) : 2815 - 2821
  • [2] A fractal model of effective thermal conductivity for porous media with various liquid saturation
    Qin, Xuan
    Cai, Jianchao
    Xu, Peng
    Dai, Sheng
    Gan, Quan
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 128 : 1149 - 1156
  • [3] Fractal models for the effective thermal conductivity of bidispersed porous media
    Yu, BM
    Cheng, P
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2002, 16 (01) : 22 - 29
  • [4] Fractal geometry model for effective thermal conductivity of three-phase porous media
    Ma, YT
    Yu, BM
    Zhang, DM
    Zou, MQ
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) : 6426 - 6434
  • [5] A FRACTAL MODEL FOR PREDICTING THE EFFECTIVE THERMAL CONDUCTIVITY OF ROUGHENED POROUS MEDIA WITH MICROSCALE EFFECT
    Xiao, Boqi
    Zhang, Min
    Chen, Hanxin
    Cao, Jiyin
    Long, Gongbo
    Zhao, Zheng
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (05)
  • [6] Experimental and Numerical Research on Effective Thermal Conductivity of Granular Porous Media
    Shi, Yufeng
    Sun, Wence
    Shi, Lihua
    Cui, Jing
    [J]. KEY ENGINEERING MATERIALS AND COMPUTER SCIENCE, 2011, 320 : 353 - +
  • [7] Fractal model for thermal conductivity of wetting, fibrous porous media
    Zhu, FangLong
    Xia, DeHong
    Zhou, Yu
    [J]. FUNCTIONAL MATERIALS AND NANOTECHNOLOGY, 2012, 496 : 12 - +
  • [8] A Fractal model for the transverse thermal dispersion conductivity in porous media
    Yu, BM
    Li, JH
    [J]. CHINESE PHYSICS LETTERS, 2004, 21 (01) : 117 - 120
  • [9] A MODEL FOR THERMAL-CONDUCTIVITY OF GRANULAR POROUS-MEDIA
    NIMICK, FB
    LEITH, JR
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1992, 114 (02): : 505 - 508
  • [10] Fractal Pore-Scale Model for Effective Thermal Conductivity of Multiscale Unsaturated Porous Media
    Xu, Peng
    Meng, Jin
    Wang, Jialiang
    Yu, Boming
    Qiu, Shuxia
    [J]. ENERGY & FUELS, 2023, 37 (20) : 15626 - 15636