HSGCL-DTA: Hybrid-scale Graph Contrastive Learning based Drug-Target Binding Affinity Prediction

被引:0
|
作者
Ye, Hongyan [1 ]
Song, Yingying [1 ]
Wang, Binyu [1 ]
Wu, Lianlian [2 ]
He, Song [3 ]
Bo, Xiaochen [3 ]
Zhang, Zhongnan [1 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen 361005, Peoples R China
[2] Tianjin Univ, Tianjin 300072, Peoples R China
[3] Inst Hlth Serv & Transfus Med, Beijing 100850, Peoples R China
基金
中国国家自然科学基金;
关键词
drug-target binding affinity; graph contrastive learning; graph convolutional network; NEURAL-NETWORK; MODEL;
D O I
10.1109/ICTAI59109.2023.00142
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Drug-target binding affinity (DTA) is a critical criterion for drug screening. Accurate affinity prediction will significantly cut the cost of new drug development and accelerate the drug discovery process. However, most existing approaches frequently utilize sequence or structure information without incorporating any additional information. At the same time, they encode drugs and targets separately, ignoring the important existing drug-target relationships. In this study, we propose a novel DTA prediction approach, named HSGCL-DTA, which is based on hybrid-scale graph contrastive learning. To completely capture the global information and discriminative properties of the heterogeneous graphs, HSGCL-DTA divides the drug-target affinity graph into two subgraphs with stronger and weaker affinities respectively, and the node embeddings of the two subgraphs are obtained based on node-graph level contrastive learning. Afterwards, graph convolutional network (GCN) is used to encode the molecular graph of drugs and targets, and the node embeddings in the strong affinity subgraph are fused with molecule graph embeddings to fully utilize the distinct information in two different views. Another node-node level contrastive learning is performed between the affinity graph and molecular graphs, thereby filtering out task-independent noise that only appears in one graph. The final drug-target embeddings are put into a multilayer perceptron (MLP) for affinity prediction. Experiments on two widely-used datasets have shown that HSGCL-DTA achieves better prediction performance and generalization than the state-of-the-art DTA prediction methods.
引用
收藏
页码:947 / 954
页数:8
相关论文
共 50 条
  • [1] GraphCL-DTA: A Graph Contrastive Learning With Molecular Semantics for Drug-Target Binding Affinity Prediction
    Yang, Xinxing
    Yang, Genke
    Chu, Jian
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (08) : 4544 - 4552
  • [2] Predicting drug-target binding affinity with cross-scale graph contrastive learning
    Wang, Jingru
    Xiao, Yihang
    Shang, Xuequn
    Peng, Jiajie
    [J]. BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [3] Multimodal contrastive representation learning for drug-target binding affinity prediction
    Zhang, Linlin
    Ouyang, Chunping
    Liu, Yongbin
    Liao, Yiming
    Gao, Zheng
    [J]. METHODS, 2023, 220 : 126 - 133
  • [4] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    [J]. INFORMATION SCIENCES, 2022, 613 : 507 - 523
  • [5] NerLTR-DTA: drug-target binding affinity prediction based on neighbor relationship and learning to rank
    Ru, Xiaoqing
    Ye, Xiucai
    Sakurai, Tetsuya
    Zou, Quan
    [J]. BIOINFORMATICS, 2022, 38 (07) : 1964 - 1971
  • [6] GTAMP-DTA: Graph transformer combined with attention mechanism for drug-target binding affinity prediction
    Tian, Chuangchuang
    Wang, Luping
    Cui, Zhiming
    Wu, Hongjie
    [J]. COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 108
  • [7] NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction
    He, Haohuai
    Chen, Guanxing
    Chen, Calvin Yu-Chian
    [J]. BIOINFORMATICS, 2023, 39 (06)
  • [8] MSGNN-DTA: Multi-Scale Topological Feature Fusion Based on Graph Neural Networks for Drug-Target Binding Affinity Prediction
    Wang, Shudong
    Song, Xuanmo
    Zhang, Yuanyuan
    Zhang, Kuijie
    Liu, Yingye
    Ren, Chuanru
    Pang, Shanchen
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [9] Prediction of drug-target binding affinity based on deep learning models
    Zhang, Hao
    Liu, Xiaoqian
    Cheng, Wenya
    Wang, Tianshi
    Chen, Yuanyuan
    [J]. Computers in Biology and Medicine, 2024, 174
  • [10] SAM-DTA: a sequence -agnostic model for drug-target binding affinity prediction
    Hu, Zhiqiang
    Liu, Wenfeng
    Zhang, Chenbin
    Huang, Jiawen
    Zhang, Shaoting
    Yu, Huiqun
    Xiong, Yi
    Liu, Hao
    Ke, Song
    Hong, Liang
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (01)