Resource Allocation Method of Edge IoT Agent Based on Deep Reinforcement Learning

被引:0
|
作者
Zhong, Jiayong [1 ]
Hu, Ke [2 ]
Lv, Xiaohong [2 ]
Chen, Yongtao [1 ]
Gao, Jin [1 ]
机构
[1] State Grid Chongqing Elect Power Co, Elect Power Res Inst, Chongqing 401123, Peoples R China
[2] State Grid Chongqing Elect Power Co, Chongqing 400044, Peoples R China
关键词
Edge IoT agent; resource allocation; deep reinforcement learning; DQN; network delay; trust model; TASK ALLOCATION; INTERNET; MANAGEMENT; AWARE;
D O I
10.1142/S0218126624500841
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Reasonable allocation of resources is an important guarantee for efficient support of power business in edge IoT agents. Facing the above problems of the current power Internet of Things, this paper proposes a resource optimization allocation method based on deep Q-learning. This method first comprehensively considers the communication performance and network security. Involving indicators such as latency and service satisfaction, a complete and reliable mathematical model of the edge Internet of Things proxy network is constructed to achieve efficient and reliable modeling of the power Internet of Things (pIoT), aiming to better fit the practical interaction needs for efficient and secure communication. The Q-learning network model is optimized, and the method combining Reinforcement learning and deep learning is used to solve the model. Used by this network, the optimization and improvement of the deep network model is realized, so that the status, action and other parameters of the network model can be solved in a timely manner, so as to better support the reliable and efficient information interaction of the communication network. The test results prove that the delay of the proposed method can be maintained within 12ms in more complex scenarios, and the interaction success rate reaches 0.975, confirming that the proposed method can provide good information interaction guarantee services.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing
    Xiong, Xiong
    Zheng, Kan
    Lei, Lei
    Hou, Lu
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (06) : 1133 - 1146
  • [2] Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach
    He, Ying
    Wang, Yuhang
    Qiu, Chao
    Lin, Qiuzhen
    Li, Jianqiang
    Ming, Zhong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2226 - 2237
  • [3] Joint Service Migration and Resource Allocation in Edge IoT System Based on Deep Reinforcement Learning
    Liu, Fangzheng
    Yu, Hao
    Huang, Jiwei
    Taleb, Tarik
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (07) : 11341 - 11352
  • [4] Edge Computing Resource Allocation Algorithm for NB-IoT Based on Deep Reinforcement Learning
    Chu, Jiawen
    Pan, Chunyun
    Wang, Yafei
    Yun, Xiang
    LI, Xuehua
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106B (05) : 439 - 447
  • [5] Multi-Agent Reinforcement Learning for Resource Allocation in IoT Networks with Edge Computing
    Liu, Xiaolan
    Yu, Jiadong
    Feng, Zhiyong
    Gao, Yue
    [J]. CHINA COMMUNICATIONS, 2020, 17 (09) : 220 - 236
  • [6] Quantum Deep Reinforcement Learning for Dynamic Resource Allocation in Mobile Edge Computing-Based IoT Systems
    Ansere, James Adu
    Gyamfi, Eric
    Sharma, Vishal
    Shin, Hyundong
    Dobre, Octavia A.
    Duong, Trung Q.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (06) : 6221 - 6233
  • [7] Edge Collaborative Task Scheduling and Resource Allocation Based on Deep Reinforcement Learning
    Chen, Tianjian
    Lyu, Zengwei
    Yuan, Xiaohui
    Wei, Zhenchun
    Shi, Lei
    Fan, Yuqi
    [J]. WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PT III, 2022, 13473 : 598 - 606
  • [8] Resource Allocation for Edge Computing in IoT Networks via Reinforcement Learning
    Liu, Xiaolan
    Qin, Zhijin
    Gao, Yue
    [J]. ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [9] Deep reinforcement learning based resource allocation in edge-cloud gaming
    Iryanto Jaya
    Yusen Li
    Wentong Cai
    [J]. Multimedia Tools and Applications, 2024, 83 (26) : 67903 - 67926
  • [10] Multi-Agent Deep Reinforcement Learning Based Distributed Resource Allocation
    Urmonov, Odilbek
    Kim, HyungWon
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,