Nonparametric Threshold Estimation for Drift Function in Jump-Diffusion Model of Interest Rate Using Asymmetric Kernel

被引:0
|
作者
Song, Yuping [1 ]
Li, Chen [2 ]
Wang, Hemin [1 ]
Meng, Jiayi [3 ]
Hao, Liang [1 ]
机构
[1] Shanghai Normal Univ, Sch Finance & Business, Shanghai 200234, Peoples R China
[2] Shandong Univ, Inst Financial Studies, Jinan 250100, Peoples R China
[3] China Jiliang Univ, Sch Econ & Management, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
jump-diffusion process; drift coefficient; short-term interest rate; gamma asymmetrical kernel; threshold function; bias reduction; PROBABILITY DENSITY-FUNCTION;
D O I
10.3390/math11102281
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The existing estimators for the drift coefficient in the diffusion model with jumps involve jump components and possess larger boundary error. How to effectively estimate the drift function is an important issue that faces challenges and has theoretical significance. In this paper, the gamma asymmetric kernel for boundary correction and threshold function eliminating jump impacts are combined to estimate the unknown drift coefficient in the jump diffusion process of interest rate. The asymptotic large sample property and the better finite sample property through the Monte Carlo numerical simulation experiment and the empirical analysis of SHIBOR and LIBOR for the corresponding estimator are considered in detail. It is found that the estimator proposed in this paper can correct the estimation error near or far away from the origin point, which provides a more asymptotic unbiased estimator for the drift function in diffusion models with jumps.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data
    Ye Xuguo
    Zhao Yanyong
    Lin Jinguan
    Long Weifang
    [J]. JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2022, 35 (06) : 2398 - 2429
  • [2] Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data
    YE Xuguo
    ZHAO Yanyong
    LIN Jinguan
    LONG Weifang
    [J]. Journal of Systems Science & Complexity, 2022, 35 (06) : 2398 - 2429
  • [3] Nonparametric Two-Step Estimation of Drift Function in the Jump-Diffusion Model with Noisy Data
    Xuguo Ye
    Yanyong Zhao
    Jinguan Lin
    Weifang Long
    [J]. Journal of Systems Science and Complexity, 2022, 35 : 2398 - 2429
  • [4] Nonparametric estimation of volatility function in the jump-diffusion model with noisy data
    Ye, Xu-Guo
    Zhao, Yan-Yong
    Zhang, Kong-Sheng
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2020, 32 (03) : 587 - 616
  • [5] A nonparametric approach to the estimation of jump-diffusion models with asymmetric kernels
    Hanif, Muhammad
    [J]. COGENT MATHEMATICS, 2016, 3
  • [6] Convoluted smoothed kernel estimation for drift coefficients in jump-diffusion models
    Liu, Naiqi
    Song, Kunyang
    Song, Yuping
    Wang, Xiaochen
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (21) : 7354 - 7389
  • [7] Double-smoothed drift estimation of jump-diffusion model
    Zhou, Likai
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (08) : 4137 - 4149
  • [8] Online drift estimation for jump-diffusion processes
    Bhudisaksang, Theerawat
    Cartea, Alvaro
    [J]. BERNOULLI, 2021, 27 (04) : 2494 - 2518
  • [9] BAYESIAN ESTIMATION OF ASYMMETRIC JUMP-DIFFUSION PROCESSES
    Frame, Samuel J.
    Ramezani, Cyrus A.
    [J]. ANNALS OF FINANCIAL ECONOMICS, 2014, 9 (03)
  • [10] Bandwidth selection of nonparametric threshold estimator in jump-diffusion models
    Wang, Hanchao
    Zhou, Likai
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (02) : 211 - 219