The Effect of Strain Rate on Hydrogen-Assisted Deformation Behavior and Microstructure in AISI 316L Austenitic Stainless Steel

被引:3
|
作者
Astafurova, Elena [1 ]
Fortuna, Anastasiya [2 ]
Melnikov, Evgenii [1 ]
Astafurov, Sergey [1 ]
机构
[1] Russian Acad Sci, Inst Strength Phys & Mat Sci, Siberian Branch, Tomsk 634055, Russia
[2] Natl Univ Sci & Technol MISiS, Dept Phys Mat Sci, Moscow 119049, Russia
关键词
austenitic stainless steel; hydrogen embrittlement; strain rate; strain hardening; microstructure; fracture; EMBRITTLEMENT; DISLOCATIONS; PLASTICITY; FRACTURE; STRESS;
D O I
10.3390/ma16082983
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of strain rate in the interval of (10(-5)-10(-3)) 1/s on room temperature tensile behavior, dislocation arrangement, deformation mechanisms, and fracture of austenitic stainless steel AISI 316L electrochemically charged with hydrogen was investigated. Independently on strain rate, hydrogen charging provides the increase in the yield strength of the specimens due to a solid solution hardening of austenite, but it slightly influences deformation behavior and strain hardening of the steel. Simultaneously, hydrogen charging assists surface embrittlement of the specimens during straining and reduces an elongation to failure, which both are strain rate-dependent parameters. Hydrogen embrittlement index decreases with increase in strain rate, which testifies the importance of hydrogen transport with dislocations during plastic deformation. The stress-relaxation tests directly confirm the hydrogen-enhanced increase in the dislocation dynamics at low strain rates. The interaction of the hydrogen atoms with dislocations and hydrogen-associated plastic flow are discussed.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] HYDROGEN-ASSISTED FRACTURE OF WELDED AISI 316 AUSTENITIC STAINLESS STEEL
    Tang, X.
    Schiroky, G. H.
    San Marchi, C.
    Somerday, B. P.
    [J]. EFFECTS OF HYDROGEN ON MATERIALS, 2009, : 147 - +
  • [2] Deformation twinning in AISI 316L austenitic stainless steel: role of strain and strain path
    Mishra, S.
    Narasimhan, K.
    Samajdar, I.
    [J]. MATERIALS SCIENCE AND TECHNOLOGY, 2007, 23 (09) : 1118 - 1126
  • [3] Hydrogen-assisted fatigue crack growth of AISI 316L stainless steel weld
    Tsay, L. W.
    Chen, J. J.
    Huang, J. C.
    [J]. CORROSION SCIENCE, 2008, 50 (11) : 2973 - 2980
  • [4] Unusual strain rate sensitive behaviour of AISI 316L austenitic stainless steel
    Langdon, GS
    Schleyer, GK
    [J]. JOURNAL OF STRAIN ANALYSIS FOR ENGINEERING DESIGN, 2004, 39 (01): : 71 - 86
  • [5] Ultrasonic Characterization of Strain Hardening Behavior in AISI 316L Austenitic Stainless Steel
    P. Behjati
    A. Najafizadeh
    H. Vahid Dastjerdi
    R. Mahdavi
    [J]. Metallurgical and Materials Transactions A, 2011, 42 : 543 - 547
  • [6] Ultrasonic Characterization of Strain Hardening Behavior in AISI 316L Austenitic Stainless Steel
    Behjati, P.
    Najafizadeh, A.
    Dastjerdi, H. Vahid
    Mahdavi, R.
    [J]. METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2011, 42A (03): : 543 - 547
  • [7] Microstructural evolution and strain hardening behavior of AISI 316L type austenitic stainless steel
    Ho, Hsin Shen
    Sun, LingLi
    Liu, KunKun
    Niu, PengHui
    Zhang, ErLiang
    [J]. INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2019, 110 (04) : 287 - 296
  • [8] EFFECT OF STRAIN AND STRAIN PATH ON DEFORMATION TWINNING AND STRAIN INDUCED MARTENSITE IN AISI 316L AND 304L AUSTENITIC STAINLESS STEEL
    Mishra, S. K.
    Pant, P.
    Narasimhan, K.
    Samajdar, I.
    [J]. MATERIALS PROCESSING AND TEXTURE, 2009, 200 : 257 - 263
  • [9] Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel
    Herms, E.
    [J]. Annales de Chimie: Science des Materiaux, 24 (4-5): : 275 - 280
  • [10] Fractographic studies of hydrogen embrittlement of AISI 316L austenitic stainless steel
    Herms, E
    [J]. ANNALES DE CHIMIE-SCIENCE DES MATERIAUX, 1999, 24 (4-5): : 275 - 280