Anderson Localization Induced by Random Defects of a Ragged Boundary

被引:0
|
作者
Chulaevsky, Victor [1 ]
机构
[1] Univ Reims, Dept Math, Moulin Housse,BP1039, F-51687 Reims, France
关键词
Anderson localization; random boundary; Bernoulli disorder; RANDOM SCHRODINGER-OPERATORS; DYNAMICAL LOCALIZATION; CLASSICAL WAVES; DIFFUSION; ABSENCE; PROOF;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study alloy-type Anderson Hamiltonians in finite-width layers in Euclidean spaces and in periodic lattices of arbitrary dimension. The disorder is induced by random microscopic defects of the boundary carrying extra potentials of infinite range featuring a power-law decay. We consider two extreme cases of disorder: with most singular, Bernoulli probability distributions, and with very regular ones, admitting a bounded probability density. Exponential spectral and sub-exponential dynamical localization are proved in both cases, by extending the methods of our papers [6, 7] from IID to correlated (Markov) random fields generating the disorder. In the smooth disorder case, we prove an asymptotically exponential strong dynamical localization under the optimal condition on the decay rate of the local potentials (summability).
引用
收藏
页码:35 / 65
页数:31
相关论文
共 50 条
  • [1] Boundary-induced Anderson localization in photonic lattices
    Molina, Mario I.
    PHYSICS LETTERS A, 2011, 375 (20) : 2056 - 2058
  • [2] Boundary-induced Anderson localization in a photonic lattice
    Naether, U.
    Zeuner, J. M.
    Stuetzer, S.
    Tuennermann, A.
    Nolte, S.
    Molina, M. I.
    Szameit, A.
    2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [3] RANDOM PHOTONICS True Anderson localization
    Conti, Claudio
    NATURE PHOTONICS, 2013, 7 (01) : 5 - 6
  • [4] ANDERSON LOCALIZATION IN ANISOTROPIC RANDOM-MEDIA
    ZHANG, ZQ
    CHU, QJ
    XUE, WG
    SHENG, P
    PHYSICAL REVIEW B, 1990, 42 (07): : 4613 - 4630
  • [5] Anderson localization in a random correlated energy landscape
    Russ, S
    Kantelhardt, JW
    Bunde, A
    Havlin, S
    Webman, I
    PHYSICA A, 1999, 266 (1-4): : 492 - 496
  • [6] Anderson Localization in Discrete Random Displacements Models
    Victor Chulaevsky
    Journal of Statistical Physics, 2023, 190
  • [7] Anderson localization and ergodicity on random regular graphs
    Tikhonov, K. S.
    Mirlin, A. D.
    Skvortsov, M. A.
    PHYSICAL REVIEW B, 2016, 94 (22)
  • [8] Anderson localization in a random correlated energy landscape
    Jack Pearl Resnick Inst. Adv. T., Dept. of Phys., Bar-Ilan-University, Ramat Gan 52900, Israel
    不详
    Phys A Stat Mech Appl, 1-4 (492-496):
  • [9] Anderson localization of light in a random configuration of nanocolumns
    Inose, Yuta
    Ohtsuki, Tomi
    Kunugita, Hideyuki
    Ema, Kazuhiro
    Sakai, Masaru
    Kikuchi, Akihiko
    Kishino, Katsumi
    16TH INTERNATIONAL CONFERENCE ON ELECTRON DYNAMICS IN SEMICONDUCTORS, OPTOELECTRONICS AND NANOSTRUCTURES (EDISON 16), 2009, 193
  • [10] Localization properties of the periodic random Anderson model
    Hilke, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1997, 30 (11): : L367 - L371