A hierarchical autoencoder and temporal convolutional neural network reduced-order model for the turbulent wake of a three-dimensional bluff body

被引:11
|
作者
Xia, Chao [1 ,2 ]
Wang, Mengjia [1 ,2 ]
Fan, Yajun [3 ]
Yang, Zhigang [1 ,2 ,4 ]
Du, Xuzhi [5 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] Tongji Univ, Shanghai Automot Wind Tunnel Ctr, Shanghai 201804, Peoples R China
[3] Univ Liverpool, Sch Engn, Liverpool L69 3GH, England
[4] Beijing Aeronaut Sci & Technol Res Inst, Beijing 102211, Peoples R China
[5] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
PRINCIPAL COMPONENT ANALYSIS; PREDICTION; FLOW;
D O I
10.1063/5.0137285
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We propose a novel reduced-order model and examine its applicability to the complex three-dimensional turbulent wake of a generic square-backed bluff body called the Ahmed body at the Reynolds number Re-H = U & INFIN;H/nu = 9.2 x 10(4) (where U-& INFIN; is free-stream velocity, H the height of the body, and nu viscosity). Training datasets are obtained by large eddy simulation. The model reduction method consists of two components-a Visual Geometry Group (VGG)-based hierarchical autoencoder (H-VGG-AE) and a temporal convolutional neural network (TCN). The first step is to map the high-dimensional flow attributes into low-dimensional features, namely latent modes, which are employed as the input for the second step. The TCN is then trained to predict the low-dimensional features in a time series. We compare this method with a TCN based on proper orthogonal decomposition (POD), which utilizes time coefficients as the input in the second part. It turns out that the H-VGG-AE has a lower reconstruction error than POD when the number of latent modes is relatively small in the first part. As the number of latent modes increases, POD exceeds in the performance of model reduction. However, the H-VGG-AE-based TCN is still more effective in terms of spatiotemporal predictions because it has a lower prediction error and costs much less time.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Reduced-order modelling of a bluff body turbulent wake flow field using hierarchical convolutional neural network autoencoder
    Xia C.
    Wang M.-J.
    Zhu J.-Y.
    Yang Z.-G.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2024, 54 (04): : 874 - 882
  • [2] Reconstructing Three-Dimensional Bluff Body Wake from Sectional Flow Fields with Convolutional Neural Networks
    Matsuo M.
    Fukami K.
    Nakamura T.
    Morimoto M.
    Fukagata K.
    SN Computer Science, 5 (3)
  • [3] Three-dimensional effects in turbulent bluff body wakes
    Prasad, A
    Williamson, CHK
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 1997, 14 (01) : 9 - 16
  • [4] A three-dimensional nonlinear reduced-order predictive joint model
    Yaxin Song
    C. J. Hartwigsen
    Lawrence A. Bergman
    Alexander F. Vakakis
    Earthquake Engineering and Engineering Vibration, 2003, 2 (1) : 59 - 73
  • [5] A three-dimensional nonlinear reduced-order predictive joint model
    宋亚新
    Hartwigsen
    LawrenceA.Bergman
    AlexanderF.Vakakis
    EarthquakeEngineeringandEngineeringVibration, 2003, 2 (01) : 59 - 73
  • [6] Two-dimensionalization of a three-dimensional bluff body wake
    Feng, Li-Hao
    Cui, Guo-Peng
    Liu, Li-Yang
    PHYSICS OF FLUIDS, 2019, 31 (01)
  • [8] Applicability of convolutional autoencoder in reduced-order model of unsteady compressible flows
    Xiao R.
    Yu J.
    Ma Z.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2023, 49 (12): : 3445 - 3455
  • [9] Three-dimensional effects in turbulent bluff-body wakes
    Prasad, A
    Williamson, CHK
    JOURNAL OF FLUID MECHANICS, 1997, 343 : 235 - 265
  • [10] Electromagnetic inversion using a reduced-order three-dimensional homogeneous model
    Budko, NV
    Remis, RF
    INVERSE PROBLEMS, 2004, 20 (06) : S17 - S26