A Pedestrian Trajectory Prediction Method for Generative Adversarial Networks Based on Scene Constraints

被引:2
|
作者
Ma, Zhongli [1 ]
An, Ruojin [1 ]
Liu, Jiajia [1 ]
Cui, Yuyong [2 ]
Qi, Jun [3 ]
Teng, Yunlong [4 ]
Sun, Zhijun [5 ]
Li, Juguang [6 ]
Zhang, Guoliang [1 ]
机构
[1] Chengdu Univ Informat Technol, Coll Automat, Chengdu 610103, Peoples R China
[2] Southwest Inst Tech Phys, Chengdu 610041, Peoples R China
[3] Chengdu Univ Informat Technol, Coll Commun Engn, Chengdu 610225, Peoples R China
[4] Univ Elect Sci & Technol China, Coll Mech & Elect Engn, Chengdu 611731, Peoples R China
[5] Nucl Power Inst China, Chengdu 610005, Peoples R China
[6] Chengdu Emfuture Technol Co Ltd, Chengdu 611731, Peoples R China
关键词
scene constraint; pedestrian trajectory prediction; generative adversarial networks; self-attention mechanism; CARLA simulation;
D O I
10.3390/electronics13030628
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pedestrian trajectory prediction is one of the most important topics to be researched for unmanned driving and intelligent mobile robots to perform perceptual interaction with the environment. To solve the problem of the SGAN (social generative adversarial networks) model lacking an understanding of pedestrian interaction and scene constraints, this paper proposes a trajectory prediction method based on a scenario-constrained generative adversarial network. Firstly, a self-attention mechanism is added, which can integrate information at every moment. Secondly, mutual information is introduced to enhance the influence of latent code on the predicted trajectory. Finally, a new social pool is introduced into the original trajectory prediction model, and a scene edge extraction module is added to ensure the final output path of the model is within the passable area in line with the physical scene, which greatly improves the accuracy of trajectory prediction. Based on the CARLA (CAR Learning to Act) simulation platform, the improved model was tested on the public dataset and the self-built dataset. The experimental results showed that the average moving deviation was reduced by 26.4% and the final offset was reduced by 23.8%, which proved that the improved model could better solve the uncertainty of pedestrian turning decisions. The accuracy and stability of pedestrian trajectory prediction are improved while maintaining multiple modes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Social-Scene-Aware Generative Adversarial Networks for Pedestrian Trajectory Prediction
    Huang, Binhao
    Ma, Zhenwei
    Chen, Lianggangxu
    He, Gaoqi
    ADVANCES IN COMPUTER GRAPHICS, CGI 2021, 2021, 13002 : 190 - 201
  • [2] Pedestrian Trajectory Prediction Method Using Dynamic Scene Information Based Transformer Generative Adversarial Network
    Pei, Zhao
    Qiu, Wen-Tao
    Wang, Miao
    Ma, Miao
    Zhang, Yan-Ning
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2022, 50 (07): : 1537 - 1547
  • [3] SISGAN: A Generative Adversarial Network Pedestrian Trajectory Prediction Model Combining Interaction Information and Scene Information
    Dou, Wanqing
    Lu, Lili
    Applied Sciences (Switzerland), 2024, 14 (20):
  • [4] Multi Attention Generative Adversarial Network for Pedestrian Trajectory Prediction Based on Spatial Gridding
    An, Huihui
    Liu, Miao
    Wang, Xiaolan
    Zhang, Weiwei
    Gong, Jun
    AUTOMOTIVE INNOVATION, 2024, 7 (03) : 443 - 455
  • [5] Pedestrian Walking Direction Prediction Using Generative Adversarial Networks
    He, Bate
    Kita, Eisuke
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 4358 - 4364
  • [6] Vehicle Trajectory Prediction at Intersections using Interaction based Generative Adversarial Networks
    Roy, Debaditya
    Ishizaka, Tetsuhiro
    Mohan, C. Krishna
    Fukuda, Atsushi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2318 - 2323
  • [7] AN ACCURATE SALIENCY PREDICTION METHOD BASED ON GENERATIVE ADVERSARIAL NETWORKS
    Yan, Bing
    Wang, Haoqian
    Wang, Xingzheng
    Zhang, Yongbing
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 2339 - 2343
  • [8] An Enhanced Driving Trajectory Prediction Method Based on Generative Adversarial Imitation Learning
    Liu, Ming
    Lin, Fanrong
    Zhang, Zhen
    Jia, Yungang
    Cui, Jianming
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 179 - 190
  • [9] Vehicle Lane-Change Trajectory Prediction Model Based on Generative Adversarial Networks
    Wen H.
    Zhang W.
    Zhao S.
    Huanan Ligong Daxue Xuebao/Journal of South China University of Technology (Natural Science), 2020, 48 (05): : 32 - 40
  • [10] SA-SGAN: A Vehicle Trajectory Prediction Model Based on Generative Adversarial Networks
    Zhou, Danyang
    Wang, Huxiao
    Li, Wei
    Zhou, Yi
    Cheng, Nan
    Lu, Ning
    2021 IEEE 94TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2021-FALL), 2021,