Artificial intelligence-enabled electrocardiogram to distinguish atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia

被引:7
|
作者
Sau, Arunashis [1 ,2 ]
Ibrahim, Safi [1 ]
Kramer, Daniel B. [1 ,3 ]
Waks, Jonathan W. [4 ]
Qureshi, Norman [1 ,2 ]
Koa-Wing, Michael [2 ]
Keene, Daniel [2 ]
Malcolme-Lawes, Louisa [2 ]
Lefroy, David C. [2 ]
Linton, Nicholas W. F. [1 ,2 ]
Lim, Phang Boon [1 ,2 ]
Varnava, Amanda [2 ]
Whinnett, Zachary I. [1 ,2 ]
Kanagaratnam, Prapa [1 ,2 ]
Mandic, Danilo [5 ]
Peters, Nicholas S. [1 ,2 ]
Ng, Fu Siong [1 ,2 ,6 ,7 ]
机构
[1] Imperial Coll London, Natl Heart & Lung Inst, London, England
[2] Imperial Coll Healthcare NHS Trust, Dept Cardiol, London, England
[3] Harvard Med Sch, Richard A & Susan F Smith Ctr Outcomes Res Cardiol, Beth Israel Deaconess Med Ctr, Boston, MA USA
[4] Harvard Med Sch, Harvard Thorndike Electrophysiol Inst, Beth Israel Deaconess Med Ctr, Boston, MA USA
[5] Imperial Coll London, Dept Elect & Elect Engn, London, England
[6] Chelsea & Westminster Hosp NHS Fdn Trust, Dept Cardiol, London, England
[7] Imperial Coll London, Natl Heart & Lung Inst, Imperial Ctr Translat & Expt Med, Cardiac Electrophysiol, 4th Floor,Hammersmith Campus,Du Cane Rd, London W12 0NN, England
来源
关键词
Artificial intelligence; Machine learning; Electrocardio-gram; Atrioventricular re-entrant tachycardia; Atrioventricular nodal re-entrant tachycardia; Electrophysiology study; Ablation; RECIPROCATING TACHYCARDIA; ABLATION; PATHWAY; DIFFERENTIATION; CLASSIFICATION; ALGORITHM; CRITERIA; WAVES;
D O I
10.1016/j.cvdhj.2023.01.004
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BACKGROUND Accurately determining arrhythmia mechanism from a 12-lead electrocardiogram (ECG) of supraventricular tachy-cardia can be challenging. We hypothesized a convolutional neural network (CNN) can be trained to classify atrioventricular re-entrant tachycardia (AVRT) vs atrioventricular nodal re-entrant tachycardia (AVNRT) from the 12-lead ECG, when using findings from the inva-sive electrophysiology (EP) study as the gold standard.METHODS We trained a CNN on data from 124 patients undergoing EP studies with a final diagnosis of AVRT or AVNRT. A total of 4962 5-second 12-lead ECG segments were used for training. Each case was labeled AVRT or AVNRT based on the findings of the EP study. The model performance was evaluated against a hold-out test set of 31 patients and compared to an existing manual algorithm.RESULTS The model had an accuracy of 77.4% in distinguishing between AVRT and AVNRT. The area under the receiver operating characteristic curve was 0.80. In comparison, the existing manual algorithm achieved an accuracy of 67.7% on the same test set. Saliency mapping demonstrated the network used the expected sec-tions of the ECGs for diagnoses; these were the QRS complexes that may contain retrograde P waves.CONCLUSION We describe the first neural network trained to differentiate AVRT from AVNRT. Accurate diagnosis of arrhythmia mechanism from a 12-lead ECG could aid preprocedural counseling, consent, and procedure planning. The current accuracy from our neural network is modest but may be improved with a larger training dataset.
引用
收藏
页码:60 / 67
页数:8
相关论文
共 50 条
  • [1] Utility of a Lewis lead for distinguishing atrioventricular re-entrant tachycardia from atrioventricular nodal re-entrant tachycardia
    Yazaki, Y.
    Goseki, Y.
    Sakaida, T.
    Takarada, K.
    Saitoh, Y.
    Satomi, K.
    Yamashina, A.
    EUROPEAN HEART JOURNAL, 2014, 35 : 942 - 942
  • [2] Atrioventricular nodal re-entrant tachycardia mimicking ventricular tachycardia on the surface electrocardiogram
    Buchta, Piotr
    Myrda, Krzysztof
    Wojtaszczyk, Adam J.
    Witek, Mateusz
    Gasior, Mariusz
    KARDIOLOGIA POLSKA, 2018, 76 (03) : 673 - 673
  • [3] Use of Programmed Ventricular Extrastimulus During Supraventricular Tachycardia to Differentiate Atrioventricular Nodal Re-Entrant Tachycardia From Atrioventricular Re-Entrant Tachycardia
    Ito, Hiroyuki
    Badhwar, Nitish
    Patel, Akash R.
    Hoffmayer, Kurt S.
    Moss, Joshua D.
    Pellegrini, Cara N.
    Vedantham, Vasanth
    Tseng, Zian H.
    Tanel, Ronn E.
    Hsia, Henry H.
    Lee, Randall J.
    Marcus, Gregory M.
    Gerstenfeld, Edward P.
    Scheinman, Melvin M.
    JACC-CLINICAL ELECTROPHYSIOLOGY, 2018, 4 (07) : 872 - 880
  • [4] Electrophysiological predictors of propafenone efficacy in prevention of atrioventricular nodal re-entrant and atrioventricular re-entrant tachycardia
    Pintaric, Hrvoje
    Zeljkovic, Ivan
    Babic, Zdravko
    Vrsalovic, Mislav
    Pavlovic, Nikola
    Bosnjak, Hrvojka
    Petrac, Dubravko
    CROATIAN MEDICAL JOURNAL, 2012, 53 (06) : 605 - 611
  • [5] DELAYED TERMINATION OF RE-ENTRANT ATRIOVENTRICULAR NODAL TACHYCARDIA
    ROSS, DL
    BRUGADA, P
    VANAGT, EJDM
    BAR, FWHM
    WELLENS, HJJ
    PACE-PACING AND CLINICAL ELECTROPHYSIOLOGY, 1983, 6 (01): : 104 - 112
  • [6] Isoprenaline and inducibility of atrioventricular nodal re-entrant tachycardia
    Hatzinikolaou, H
    Rodriguez, LM
    Smeets, JLRM
    Timmermans, C
    Vrouchos, G
    Grecas, G
    Wellens, HJJ
    HEART, 1998, 79 (02) : 165 - 168
  • [7] ATRIOVENTRICULAR NODAL RE-ENTRANT TACHYCARDIA ABLATION IN A CENTENARIAN
    Aktas, Mehmet K.
    Tokarz, Stephen R.
    Daubert, James P.
    JOURNAL OF THE AMERICAN GERIATRICS SOCIETY, 2009, 57 (04) : 753 - 754
  • [8] Atrioventricular Nodal Non Re-Entrant Tachycardia (AVNNT)
    Sugumar, Hariharan
    Tung, Matthew
    Leather, Richard
    Lane, Christopher
    Sterns, Laurence D.
    Novak, Paul G.
    HEART LUNG AND CIRCULATION, 2017, 26 (05): : 524 - 525
  • [9] Cardioneuroablation in a patient with atrioventricular nodal re-entrant tachycardia
    Roubicek, Tomas
    Wichterle, Dan
    Kautzner, Josef
    EUROPACE, 2018, 20 (12): : 2044 - 2044
  • [10] Spatial characterization of the tachycardia circuit of atrioventricular nodal re-entrant tachycardia
    Katritsis, Demosthenes G.
    Marine, Joseph E.
    Katritsis, George
    Latchamsetty, Rakesh
    Zografos, Theodoros
    Zimetbaum, Peter
    Buxton, Alfred E.
    Calkins, Hugh
    Morady, Fred
    Sanchez-Quintana, Damian
    Anderson, Robert H.
    EUROPACE, 2021, 23 (10): : 1596 - 1602