A deep-learning approach to the 3D reconstruction of dust density and temperature in star-forming regions

被引:0
|
作者
Ksoll, Victor F. [1 ]
Reissl, Stefan [1 ]
Klessen, Ralf S. [1 ,2 ]
Stephens, Ian W. [3 ,4 ]
Smith, Rowan J. [9 ,10 ]
Soler, Juan D. [5 ]
Traficante, Alessio [5 ]
Girichidis, Philipp [1 ]
Testi, Leonardo [6 ,7 ]
Hennebelle, Patrick [8 ]
Molinari, Sergio [5 ]
机构
[1] Heidelberg Univ, Inst Theoret Astrophys, Zentrum Astron, Albert Ueberle Str 2, D-69120 Heidelberg, Germany
[2] Heidelberg Univ, Interdisziplinares Zentrum Wissensch Rechnen, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[3] Worcester State Univ, Dept Earth Environm & Phys, Worcester, MA 01602 USA
[4] Ctr Astrophys Harvard & Smithsonian, 60 Garden St, Cambridge, MA 02138 USA
[5] Ist Astrofis & Planetol Spaziali IAPS, INAF, Via Fosso Cavaliere 100, I-00133 Rome, Italy
[6] Alma Mater Studiorum Univ Bologna, Dipartimento Fis & Astron DIFA, Via Gobetti 93-2, I-40129 Bologna, Italy
[7] INAF Osservatorio Astrofis Arcetri, Largo E Fermi 5, I-50125 Florence, Italy
[8] Univ Paris C, Univ Paris Cite, CEA, CNRS,AIM, F-91191 Gif Sur Yvette, France
[9] Univ St Andrews, Sch Phys & Astron, St Andrews KY16 9SS, Scotland
[10] Univ Manchester, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, England
基金
欧洲研究理事会;
关键词
methods: statistical; stars: formation; dust; extinction; INTERSTELLAR DUST; MOLECULAR CLOUDS; RADIATIVE-TRANSFER; RHO-OPHIUCHI; HI-GAL; MAPS; SIMULATIONS; EMISSION; SPACE; FIELD;
D O I
10.1051/0004-6361/202347758
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Aims. We introduce a new deep-learning approach for the reconstruction of 3D dust density and temperature distributions from multi-wavelength dust emission observations on the scale of individual star-forming cloud cores (<0.2 pc). Methods. We constructed a training data set by processing cloud cores from the Cloud Factory simulations with the POLARIS radiative transfer code to produce synthetic dust emission observations at 23 wavelengths between 12 and 1300 mu m. We simplified the task by reconstructing the cloud structure along individual lines of sight (LoSs) and trained a conditional invertible neural network (cINN) for this purpose. The cINN belongs to the group of normalising flow methods and it is able to predict full posterior distributions for the target dust properties. We tested different cINN setups, ranging from a scenario that includes all 23 wavelengths down to a more realistically limited case with observations at only seven wavelengths. We evaluated the predictive performance of these models on synthetic test data. Results. We report an excellent reconstruction performance for the 23-wavelength cINN model, achieving median absolute relative errors of about 1.8% in log(n/m(-3)) and 1% in log(T-dust/K), respectively. We identify trends towards an overestimation at the low end of the density range and towards an underestimation at the high end of both the density and temperature values, which may be related to a bias in the training data. After limiting our coverage to a combination of only seven wavelengths, we still find a satisfactory performance with average absolute relative errors of about 2.8% and 1.7% in log(n/m(-3)) and log(T-dust/K). Conclusions. This proof-of-concept study shows that the cINN-based approach for 3D reconstruction of dust density and temperature is very promising and it is even compatible with a more realistically constrained wavelength coverage.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] A new method for determining the dust temperature distribution in star-forming regions
    Li, D
    Goldsmith, PF
    Xie, TL
    [J]. ASTROPHYSICAL JOURNAL, 1999, 522 (02): : 897 - 903
  • [2] Modeling Star-Forming Regions using a 3D Molecular Transport Code
    Loughnane, R. M.
    Redman, M. P.
    Keto, E. R.
    [J]. ADVANCES IN COMPUTATIONAL ASTROPHYSICS: METHODS, TOOLS AND OUTCOMES, 2012, 453 : 33 - +
  • [3] MODELING THE PHYSICAL STRUCTURE OF STAR-FORMING REGIONS WITH LIME, A 3D RADIATIVE TRANSFER CODE
    Quenard, D.
    Bottinelli, S.
    Caux, E.
    [J]. 6TH ZERMATT ISM-SYMPOSIUM: CONDITIONS AND IMPACT OF STAR FORMATION: FROM LAB TO SPACE: IN MEMORY OF CHARLES H. TOWNES, 2016, 75-76 : 389 - 390
  • [4] Dust Temperature Profiles in Dense Cores Related to the High-Mass Star-Forming Regions
    L. E. Pirogov
    [J]. Radiophysics and Quantum Electronics, 2022, 64 : 857 - 872
  • [5] DUST TEMPERATURE PROFILES IN DENSE CORES RELATED TO THE HIGH-MASS STAR-FORMING REGIONS
    Pirogov, L. E.
    [J]. RADIOPHYSICS AND QUANTUM ELECTRONICS, 2022, 64 (12) : 857 - 872
  • [6] 3D Spectroscopic Observations of Star-Forming Dwarf Galaxies
    Weilbacher, Peter M.
    Cairos, Luz Marina
    Caon, Nicola
    Papaderos, Polychronis
    [J]. DWARF GALAXIES: KEYS TO GALAXY FORMATION AND EVOLUTION: PROCEEDINGS OF SYMPOSIUM 3 OF JENAM 2010, 2012, : 205 - 213
  • [7] Dust Temperature of Compact Star-forming Galaxies at z ∼ 1-3 in 3D-HST/CANDELS
    Chen, Zuyi
    Fang, Guanwen
    Lin, Zesen
    Zhang, Hongxin
    Chen, Guangwen
    Kong, Xu
    [J]. ASTROPHYSICAL JOURNAL, 2021, 906 (02):
  • [8] The Per-Tau Shell: A Giant Star-forming Spherical Shell Revealed by 3D Dust Observations
    Bialy, Shmuel
    Zucker, Catherine
    Goodman, Alyssa
    Foley, Michael M.
    Alves, Joao
    Semenov, Vadim A.
    Benjamin, Robert
    Leike, Reimar
    Ensslin, Torsten
    [J]. ASTROPHYSICAL JOURNAL LETTERS, 2021, 919 (01)
  • [9] Asteroid-NeRF: A deep-learning method for 3D surface reconstruction of asteroids
    Chen, Shihan
    Wu, Bo
    Li, Hongliang
    Li, Zhaojin
    Liu, Yi
    [J]. ASTRONOMY & ASTROPHYSICS, 2024, 687
  • [10] Three-dimensional dust density structure of the Orion, Cygnus X, Taurus, and Perseus star-forming regions
    Dharmawardena, T. E.
    Bailer-Jones, C. A. L.
    Fouesneau, M.
    Foreman-Mackey, D.
    [J]. ASTRONOMY & ASTROPHYSICS, 2022, 658