Logical quantum processor based on reconfigurable atom arrays

被引:273
|
作者
Bluvstein, Dolev [1 ]
Evered, Simon J. [1 ]
Geim, Alexandra A. [1 ]
Li, Sophie H. [1 ]
Zhou, Hengyun [1 ,2 ]
Manovitz, Tom [1 ]
Ebadi, Sepehr [1 ]
Cain, Madelyn [1 ]
Kalinowski, Marcin [1 ]
Hangleiter, Dominik [3 ]
Ataides, J. Pablo Bonilla [1 ]
Maskara, Nishad [1 ]
Cong, Iris [1 ]
Gao, Xun [1 ]
Sales Rodriguez, Pedro [2 ]
Karolyshyn, Thomas [2 ]
Semeghini, Giulia [4 ]
Gullans, Michael J. [3 ]
Greiner, Markus [1 ]
Vuletic, Vladan [5 ,6 ]
Lukin, Mikhail D. [1 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] QuEra Comp Inc, Boston, MA USA
[3] Univ Maryland, Joint Ctr Quantum Informat & Comp Sci, NIST, College Pk, MD USA
[4] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA USA
[5] MIT, Dept Phys, Cambridge, MA USA
[6] MIT, Res Lab Elect, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
COMPUTATIONAL ADVANTAGE; ENTANGLEMENT; TRANSPORT; SIMULATION; SUPREMACY; QUBIT; GATES;
D O I
10.1038/s41586-023-06927-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Suppressing errors is the central challenge for useful quantum computing1, requiring quantum error correction (QEC)2-6 for large-scale processing. However, the overhead in the realization of error-corrected 'logical' qubits, in which information is encoded across many physical qubits for redundancy2-4, poses substantial challenges to large-scale logical quantum computing. Here we report the realization of a programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits. Using logical-level control and a zoned architecture in reconfigurable neutral-atom arrays7, our system combines high two-qubit gate fidelities8, arbitrary connectivity7,9, as well as fully programmable single-qubit rotations and mid-circuit readout10-15. Operating this logical processor with various types of encoding, we demonstrate improvement of a two-qubit logic gate by scaling surface-code6 distance from d = 3 to d = 7, preparation of colour-code qubits with break-even fidelities5, fault-tolerant creation of logical Greenberger-Horne-Zeilinger (GHZ) states and feedforward entanglement teleportation, as well as operation of 40 colour-code qubits. Finally, using 3D [[8,3,2]] code blocks16,17, we realize computationally complex sampling circuits18 with up to 48 logical qubits entangled with hypercube connectivity19 with 228 logical two-qubit gates and 48 logical CCZ gates20. We find that this logical encoding substantially improves algorithmic performance with error detection, outperforming physical-qubit fidelities at both cross-entropy benchmarking and quantum simulations of fast scrambling21,22. These results herald the advent of early error-corrected quantum computation and chart a path towards large-scale logical processors. A programmable quantum processor based on encoded logical qubits operating with up to 280 physical qubits is described, in which improvement of algorithmic performance using a variety of error-correction codes is enabled.
引用
收藏
页码:58 / 65
页数:28
相关论文
共 50 条
  • [1] Logical quantum processor based on reconfigurable atom arrays
    Dolev Bluvstein
    Simon J. Evered
    Alexandra A. Geim
    Sophie H. Li
    Hengyun Zhou
    Tom Manovitz
    Sepehr Ebadi
    Madelyn Cain
    Marcin Kalinowski
    Dominik Hangleiter
    J. Pablo Bonilla Ataides
    Nishad Maskara
    Iris Cong
    Xun Gao
    Pedro Sales Rodriguez
    Thomas Karolyshyn
    Giulia Semeghini
    Michael J. Gullans
    Markus Greiner
    Vladan Vuletić
    Mikhail D. Lukin
    Nature, 2024, 626 : 58 - 65
  • [2] A quantum processor based on coherent transport of entangled atom arrays
    Bluvstein, Dolev
    Levine, Harry
    Semeghini, Giulia
    Wang, Tout T.
    Ebadi, Sepehr
    Kalinowski, Marcin
    Keesling, Alexander
    Maskara, Nishad
    Pichler, Hannes
    Greiner, Markus
    Vuletic, Vladan
    Lukin, Mikhail D.
    NATURE, 2022, 604 (7906) : 451 - +
  • [3] A quantum processor based on coherent transport of entangled atom arrays
    Dolev Bluvstein
    Harry Levine
    Giulia Semeghini
    Tout T. Wang
    Sepehr Ebadi
    Marcin Kalinowski
    Alexander Keesling
    Nishad Maskara
    Hannes Pichler
    Markus Greiner
    Vladan Vuletić
    Mikhail D. Lukin
    Nature, 2022, 604 : 451 - 456
  • [4] Atomique: A Quantum Compiler for Reconfigurable Neutral Atom Arrays
    Wang, Hanrui
    Liu, Pengyu
    Tan, Daniel Bochen
    Li, Yilian
    Gu, Jiaqi
    Pan, David Z.
    Cong, Jason
    Acar, Umut A.
    Han, Song
    2024 ACM/IEEE 51ST ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2024, 2024, : 293 - 309
  • [5] Design of Processor Arrays for Reconfigurable Architectures
    Dirk Fimmel
    Renate Merker
    The Journal of Supercomputing, 2001, 19 : 41 - 56
  • [6] Design of processor arrays for reconfigurable architectures
    Fimmel, D
    Merker, R
    JOURNAL OF SUPERCOMPUTING, 2001, 19 (01): : 41 - 56
  • [7] A Retargetable Compiler Based on Graph Representation for Dynamically Reconfigurable Processor Arrays
    Tunbunheng, Vasutan
    Amano, Hideharu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2008, E91D (11) : 2655 - 2665
  • [8] Virtual parallelism support in reconfigurable processor arrays
    Maresca, Massimo
    Li, Hungwen
    Journal of Information Science and Engineering, 1993, 9 (01) : 45 - 60
  • [9] Dynamically Reconfigurable Multi-Processor Arrays
    Glenn-Anderson, James
    CONFERENCE RECORD OF THE 2014 FORTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2014, : 1858 - 1863
  • [10] Qubit Mapping for Reconfigurable Atom Arrays
    Tan, Bochen
    Bluvstein, Dolev
    Lukin, Mikhail D.
    Cong, Jason
    2022 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN, ICCAD, 2022,