Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells

被引:6
|
作者
Muniz, Ayse J. [1 ,2 ]
Topal, Tugba [1 ]
Brooks, Michael D. [3 ]
Sze, Angela [1 ]
Kim, Do Hoon [1 ,4 ]
Jordahl, Jacob [1 ,4 ]
Nguyen, Joe [1 ]
Krebsbach, Paul H. [1 ]
Savelieff, Masha G. [5 ,6 ]
Feldman, Eva L. [5 ,6 ,7 ]
Lahann, Joerg [1 ,2 ,4 ,8 ]
机构
[1] Univ Michigan, Biointerfaces Inst, Ann Arbor, MI USA
[2] Univ Michigan, Macromol Sci & Engn Program, Ann Arbor, MI USA
[3] Univ Michigan, Dept Internal Med, Ann Arbor, MI USA
[4] Univ Michigan, Dept Chem Engn, Ann Arbor, MI USA
[5] Univ Michigan, NeuroNetwork Emerging Therapies, Ann Arbor, MI USA
[6] Univ Michigan, Dept Neurol, Ann Arbor, MI USA
[7] Univ Michigan, NeuroNetwork Emerging Therapies, 5017 AAT BSRB, 109 Zina Pitcher Pl, Ann Arbor, MI 48109 USA
[8] Univ Michigan, Biointerfaces Inst, NCRC Bldg 10, Room A175, 2800 Plymouth Rd, Ann Arbor, MI 48109 USA
来源
基金
美国国家科学基金会;
关键词
PROTEOMIC ANALYSIS; MATRIGEL; DIFFERENTIATION; MORPHOGENESIS; HYDROGELS; DISEASES; NEURONS; BURDEN; MODELS; GROWTH;
D O I
10.1002/acn3.51820
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
ObjectiveBrain organoids are miniaturized in vitro brain models generated from pluripotent stem cells, which resemble full-sized brain more closely than conventional two-dimensional cell cultures. Although brain organoids mimic the human brain's cell-to-cell network interactions, they generally fail to faithfully recapitulate cell-to-matrix interactions. Here, an engineered framework, called an engineered extracellular matrix (EECM), was developed to provide support and cell-to-matrix interactions to developing brain organoids. MethodsWe generated brain organoids using EECMs comprised of human fibrillar fibronectin supported by a highly porous polymer scaffold. The resultant brain organoids were characterized by immunofluorescence microscopy, transcriptomics, and proteomics of the cerebrospinal fluid (CSF) compartment. ResultsThe interstitial matrix-mimicking EECM enhanced neurogenesis, glial maturation, and neuronal diversity from human embryonic stem cells versus conventional protein matrix (Matrigel). Additionally, EECMs supported long-term culture, which promoted large-volume organoids containing over 250 mu L of CSF. Proteomics analysis of the CSF found it superseded previous brain organoids in protein diversity, as indicated by 280 proteins spanning 500 gene ontology pathways shared with adult CSF. InterpretationEngineered EECM matrices represent a major advancement in neural engineering as they have the potential to significantly enhance the structural, cellular, and functional diversity that can be achieved in advanced brain models.
引用
收藏
页码:1239 / 1253
页数:15
相关论文
共 50 条
  • [1] Patterning of brain organoids derived from human pluripotent stem cells
    Zhang, Zhijian
    O'Laughlin, Richard
    Song, Hongjun
    Ming, Guo-Li
    CURRENT OPINION IN NEUROBIOLOGY, 2022, 74
  • [2] Functional Characterization of Brain Organoids Derived From Human Pluripotent Stem Cells
    Yuen, Eunice
    Amiri, Anahita
    Vaccarino, Flora
    BIOLOGICAL PSYCHIATRY, 2018, 83 (09) : S369 - S369
  • [3] Brainstem Organoids From Human Pluripotent Stem Cells
    Eura, Nobuyuki
    Matsui, Takeshi K.
    Luginbuhl, Joachim
    Matsubayashi, Masaya
    Nanaura, Hitoki
    Shiota, Tomo
    Kinugawa, Kaoru
    Iguchi, Naohiko
    Kiriyama, Takao
    Zheng, Canbin
    Kouno, Tsukasa
    Lan, Yan Jun
    Kongpracha, Pornparn
    Wiriyasermkul, Pattama
    Sakaguchi, Yoshihiko M.
    Nagata, Riko
    Komeda, Tomoya
    Morikawa, Naritaka
    Kitayoshi, Fumika
    Jong, Miyong
    Kobashigawa, Shinko
    Nakanishi, Mari
    Hasegawa, Masatoshi
    Saito, Yasuhiko
    Shiromizu, Takashi
    Nishimura, Yuhei
    Kasai, Takahiko
    Takeda, Maiko
    Kobayashi, Hiroshi
    Inagaki, Yusuke
    Tanaka, Yasuhito
    Makinodan, Manabu
    Kishimoto, Toshifumi
    Kuniyasu, Hiroki
    Nagamori, Shushi
    Muotri, Alysson R.
    Shin, Jay W.
    Sugie, Kazuma
    Mori, Eiichiro
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [4] Differentiation of retinal organoids from human pluripotent stem cells
    Fligor, Clarisse M.
    Huang, Kang-Chieh
    Lavekar, Sailee S.
    VanderWall, Kirstin B.
    Meyer, Jason S.
    HUMAN PLURIPOTENT STEM CELL DERIVED ORGANOID MODELS, 2020, 159 : 279 - +
  • [5] Generation of cerebral organoids from human pluripotent stem cells
    Lancaster, Madeline A.
    Knoblich, Juergen A.
    NATURE PROTOCOLS, 2014, 9 (10) : 2329 - 2340
  • [6] Generation of kidney organoids from human pluripotent stem cells
    Minoru Takasato
    Pei X Er
    Han S Chiu
    Melissa H Little
    Nature Protocols, 2016, 11 : 1681 - 1692
  • [7] Generation of kidney organoids from human pluripotent stem cells
    Takasato, Minoru
    Er, Pei X.
    Chiu, Han S.
    Little, Melissa H.
    NATURE PROTOCOLS, 2016, 11 (09) : 1681 - 1692
  • [8] Development of Islet Organoids from Human Pluripotent Stem Cells
    Ye, K.
    Wang, W.
    Jin, S.
    TISSUE ENGINEERING PART A, 2015, 21 : S354 - S354
  • [9] Cornea organoids from human induced pluripotent stem cells
    Foster, James W.
    Wahlin, Karl
    Adams, Sheila M.
    Birk, David E.
    Zack, Donald J.
    Chakravarti, Shukti
    SCIENTIFIC REPORTS, 2017, 7
  • [10] Cornea organoids from human induced pluripotent stem cells
    James W. Foster
    Karl Wahlin
    Sheila M. Adams
    David E. Birk
    Donald J. Zack
    Shukti Chakravarti
    Scientific Reports, 7