Quasi-Synchronization of Timescale-Type Delayed Neural Networks With Parameter Mismatches via Impulsive Control

被引:4
|
作者
Wan, Peng [1 ,2 ]
Zeng, Zhigang [3 ,4 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Informat Sci & Engn, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Engn Res Ctr Met Automat & Measurement Technol, Wuhan 430081, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Educ Minist China, Wuhan 430074, Peoples R China
[4] Huazhong Univ Sci & Technol, Key Lab Image Proc & Intelligent Control, Educ Minist China, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Artificial neural networks; Synchronization; Delays; Technological innovation; Neurons; Linear matrix inequalities; Intelligent control; Impulsive control; parameter mismatch; quasi-synchronization (QS); timescale-type NNs (TNNs); time-varying delays (TVDs); STABLE PERIODIC-SOLUTIONS; UNSTABLE SUBSYSTEMS; DISCRETE; STABILITY; MULTIPERIODICITY; STABILIZATION;
D O I
10.1109/TSMC.2022.3228105
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most synchronization criteria are scale-free on time evolution, whose main research objects are discrete-time/continuous-time systems. Unlike these theoretical results, in order to develop impulsive control schemes for discrete-time and continuous-time neural networks (NNs) in a unified framework. This article investigates impulsive control design of timescale-type NNs (TNNs) with parameter mismatches and time-varying delays (TVDs). First, several timescale impulsive differential inequalities are demonstrated by the timescale theory, which offer new inequality techniques for the investigation of timescale-type impulsive systems. Next, some criteria are proved for discrete-time NNs and TNNs by utilizing impulsive control theory, timescale inequality techniques, and the average impulsive interval method. Unlike the published works, this article gives some impulsive control schemes to ensure quasi-synchronization (QS) even if there exist TVDs in TNNs. In the end, four simulation examples are offered to demonstrate the validness of the obtained theoretical results.
引用
收藏
页码:4254 / 4266
页数:13
相关论文
共 50 条
  • [1] Quasi-synchronization of multi-layer delayed neural networks with parameter mismatches via impulsive control
    Shi, Lingna
    Li, Jiarong
    Jiang, Haijun
    Wang, Jinling
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 175
  • [2] Quasi-synchronization of neural networks with parameter mismatches and delayed impulsive controller on time scales
    Hunag, Zhenkun
    Cao, Jinde
    Li, Jiamin
    Bin, Honghua
    [J]. NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 33 : 104 - 115
  • [3] Quasi-Synchronization of Delayed Memristive Neural Networks via a Hybrid Impulsive Control
    Zhou, Yufeng
    Zhang, Hao
    Zeng, Zhigang
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (03): : 1954 - 1965
  • [4] Quasi-Synchronization for Delayed Systems With Parameter Mismatches via Aperiodically Intermittent Control
    Liu, Xiwei
    Li, Ping
    Xu, Yuan
    Liu, Ying
    [J]. 2014 2ND INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2014, : 33 - 38
  • [5] Quasi-Synchronization in Heterogeneous Delayed Multiplex Networks Via Impulsive Control
    Jin, Xin
    Wang, Zhengxin
    Lu, Yanling
    Feng, Yuanzhen
    Zheng, Cong
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 4554 - 4559
  • [6] Impulsive Effects on Quasi-Synchronization of Neural Networks With Parameter Mismatches and Time-Varying Delay
    Tang, Ze
    Park, Ju H.
    Feng, Jianwen
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (04) : 908 - 919
  • [7] Intermittent quasi-synchronization criteria of chaotic delayed neural networks with parameter mismatches and stochastic perturbation mismatches via Razumikhin-type approach
    Ding, Kui
    Zhu, Quanxin
    [J]. NEUROCOMPUTING, 2019, 365 : 314 - 324
  • [8] Quasi-Synchronization of Delayed Stochastic Multiplex Networks via Impulsive Pinning Control
    Wang, Zhengxin
    Jin, Xin
    Pan, Lijun
    Feng, Yuanzhen
    Cao, Jinde
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (09): : 5389 - 5397
  • [9] Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches
    Liu, Xiaoyang
    Chen, Tianping
    Cao, Jinde
    Lu, Wenlian
    [J]. NEURAL NETWORKS, 2011, 24 (10) : 1013 - 1021
  • [10] Further Results on Quasi-Synchronization of Delayed Chaotic Systems with Parameter Mismatches Via Intermittent Control
    Jiang, Yan
    Zhai, Junyong
    [J]. ASIAN JOURNAL OF CONTROL, 2018, 20 (06) : 2302 - 2313