Sensitization of 316L Stainless Steel made by Laser Powder Bed Fusion Additive Manufacturing

被引:3
|
作者
Snitzer, John [1 ]
Lou, Xiaoyuan [1 ]
机构
[1] Purdue Univ, Sch Nucl Engn, W Lafayette, IN 47906 USA
关键词
316L stainless steel; additive manufacturing; carbide; double-loop electrochemical potentiokinetic reactivation; intergranular orrosion; laser powder bed fusion; sensitization; INTERGRANULAR CORROSION; THERMAL-STABILITY; GRAIN STRUCTURE; MICROSTRUCTURE; RESISTANCE; TEXTURE; PRECIPITATION; BEHAVIOR;
D O I
10.5006/4241
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additively manufactured (AM) 316L stainless steel (SS) manufactured by laser powder bed fusion (L-PBF) and wrought 316L SS were subjected to sensitization heat treatments at 700 degrees C up to 100 h. Using two evaluation methods, double-loop electrochemical potentiokinetic reactivation (DL-EPR) and ditching tests, degree of sensitization (DOS) and intergranular corrosion (IGC) susceptibility was evaluated. It was found that the wrought samples showed slightly lower IGC susceptibility compared to their AM counterpart. DOS and IGC attacks increased with sensitization time for all samples. Dislocation cellular structures were found to have little to no impact on DOS and IGC for the AM samples. Sensitized at 100 h, the AM sample showed significant Cr depletion along high-angle grain boundaries (12.35 wt% on average) and exhibited Cr carbide precipitation. Mo-rich particles along grain boundaries were also observed. The DL-EPR test attacks the surface oxide film and grain boundaries while the ditching test attacks the melt pool boundaries and grain boundaries (IGC and pitting). Changes to the DL-EPR and ditching standards for AM application have been proposed in this work.
引用
收藏
页码:240 / 251
页数:12
相关论文
共 50 条
  • [1] Understanding Melt Pool Behavior of 316L Stainless Steel in Laser Powder Bed Fusion Additive Manufacturing
    Zhang, Zilong
    Zhang, Tianyu
    Sun, Can
    Karna, Sivaji
    Yuan, Lang
    MICROMACHINES, 2024, 15 (02)
  • [2] Pitting Corrosion in 316L Stainless Steel Fabricated by Laser Powder Bed Fusion Additive Manufacturing: A Review and Perspective
    Voisin, T.
    Shi, R.
    Zhu, Y.
    Qi, Z.
    Wu, M.
    Sen-Britain, S.
    Zhang, Y.
    Qiu, S. R.
    Wang, Y. M.
    Thomas, S.
    Wood, B. C.
    JOM, 2022, 74 (04) : 1668 - 1689
  • [3] Pitting Corrosion in 316L Stainless Steel Fabricated by Laser Powder Bed Fusion Additive Manufacturing: A Review and Perspective
    T. Voisin
    R. Shi
    Y. Zhu
    Z. Qi
    M. Wu
    S. Sen-Britain
    Y. Zhang
    S. R. Qiu
    Y. M. Wang
    S. Thomas
    B. C. Wood
    JOM, 2022, 74 : 1668 - 1689
  • [4] A Study of the Corrosion Resistance of 316L Stainless Steel Manufactured by Powder Bed Laser Additive Manufacturing
    Ahuir-Torres, Juan Ignacio
    Burgess, Andrew
    Sharp, Martin Charles
    Opoz, Tahsin Tecelli
    Malkeson, Sean P.
    Falkingham, Peter L.
    Darlington, Robert I.
    Tammas-Williams, Samuel
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [5] On the stress corrosion crack growth behaviour in high temperature water of 316L stainless steel made by laser powder bed fusion additive manufacturing
    Lou, Xiaoyuan
    Song, Miao
    Emigh, Paul W.
    Othon, Michelle A.
    Andresen, Peter L.
    CORROSION SCIENCE, 2017, 128 : 140 - 153
  • [6] Hydrogen Trapping in Laser Powder Bed Fusion 316L Stainless Steel
    Metalnikov, Polina
    Ben-Hamu, Guy
    Eliezer, Dan
    METALS, 2022, 12 (10)
  • [7] Microstructural and Nanoindentation Investigation on the Laser Powder Bed Fusion Stainless Steel 316L
    Kurdi, Abdulaziz
    Tabbakh, Thamer
    Basak, Animesh Kumar
    MATERIALS, 2023, 16 (17)
  • [8] Simulation of 316L Stainless Steel Produced the Laser Powder Bed Fusion Process
    Kascak, Lubos
    Varga, Jan
    Bidulska, Jana
    Bidulsky, Robert
    MATERIALS, 2023, 16 (24)
  • [9] Mechanical and Microstructural Anisotropy of Laser Powder Bed Fusion 316L Stainless Steel
    Pitrmuc, Zdenek
    Simota, Jan
    Beranek, Libor
    Mikes, Petr
    Andronov, Vladislav
    Sommer, Jiri
    Holesovsky, Frantisek
    MATERIALS, 2022, 15 (02)
  • [10] Development of crystallographic misorientation in laser powder bed fusion 316L stainless steel
    Biswas, Prosenjit
    Ma, Ji
    ADDITIVE MANUFACTURING, 2024, 80