Flow regimes and transitions in an ultra-high temperature gas-solid fluidized bed

被引:1
|
作者
Zhang, Qingjin [1 ,2 ]
Fu, Liangliang [2 ,3 ]
Xu, Guangwen [2 ]
Bai, Dingrong [2 ]
机构
[1] Shenyang Univ Chem Technol, Sch Mat Sci & Engn, Shenyang 110142, Peoples R China
[2] Shenyang Univ Chem Technol, Key Lab Resources Chem & Mat, Minist Educ, Shenyang 110142, Peoples R China
[3] Univ Sci & Technol Liaoning, Sch Chem Engn, Anshan 114051, Peoples R China
基金
中国国家自然科学基金;
关键词
Flow regimes; Transition velocity; Fluidized beds; High temperature; Pressure fluctuations; PARTICLE-SIZE DISTRIBUTION; DENSE PHASE PROPERTIES; MINIMUM FLUIDIZATION; OPERATING TEMPERATURE; PRESSURE FLUCTUATION; VELOCITY; REACTOR; HYDRODYNAMICS; BEHAVIOR; VOIDAGE;
D O I
10.1016/j.powtec.2023.119014
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Gas -solid fluidized bed reactors are widely used in industrial operations and thus have led to a significant amount of fundamental research over decades. For better design and operation of fluidized bed systems, it is essential to understand the fluidization regime and the related transition conditions. Dr. John R. Grace, a prominent figure and pioneer in fluidization science and technology, has made significant contributions to understanding fluidized bed systems, including fluidization regimes and their transitions. This study is a tribute to his extraordinary legacy, focusing on investigations of fluidization regimes and transitions in a laboratory -scale gas -fluidized bed operating from ambient to 1600 C-degrees. The results indicate that the fluidization regime transitions follow three distinct pathways across different temperature ranges: below 300 C-degrees, from 300 to 1400 C-degrees, and above 1400 C-degrees. These distinctive transitions arise as a result of the varying significances of hydrodynamic and interparticle forces in the fluidized bed of particles investigated.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Flow regimes in gas-solid fluidized bed with for vertical internals
    Taofeeq, Haidar
    Al-Dahhan, Muthanna
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 138 : 87 - 104
  • [2] Information transmission and flow regimes identification in gas-solid fluidized bed
    Wang, Xiaoping
    Huang, Yilun
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 2003, 54 (08): : 1059 - 1064
  • [3] Investigation on gas-solid flow regimes in a novel multistage fluidized bed
    Wu, Gongpeng
    He, Yan
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2022, 46 : 21 - 30
  • [4] EXPERIMENTAL AND NUMERICAL STUDY OF COLD GAS-SOLID FLOW REGIMES IN A FLUIDIZED BED GASIFIER
    Pylypenko, Anton
    Rastigejev, Yevgenii
    Wang, Lijun
    Shahbazi, Abolghasem
    PROCEEDINGS OF THE ASME POWER CONFERENCE JOINT WITH ICOPE-17, 2017, VOL 2, 2017,
  • [5] Gas-solid flow modelling in a circulating fluidized bed
    Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor 81310, Malaysia
    Int J Modell Simul, 2008, 1 (85-90):
  • [6] Numerical Simulation of Gas-Solid Flow in a Wurster Fluidized Bed
    Zhou, Hang
    Wang, Haigang
    Tu, Qiuya
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON DISCRETE ELEMENT METHODS, 2017, 188 : 1005 - 1012
  • [7] Influence of the Granular Temperature in the Numerical Simulation of Gas-Solid Flow in a Bubbling Fluidized Bed
    Mineto, Andreza Tangerino
    De Souza Braun, Meire Pereira
    Navarro, Helio Aparecido
    Cabezas-Gomez, Luben
    CHEMICAL ENGINEERING COMMUNICATIONS, 2014, 201 (08) : 1003 - 1020
  • [8] Experimental Research on Gas-solid Flow in a Dual Fluidized Bed
    Li, Jun
    Dong, Changqing
    Zhang, Junjiao
    Yang, Yongping
    2009 INTERNATIONAL CONFERENCE ON SUSTAINABLE POWER GENERATION AND SUPPLY, VOLS 1-4, 2009, : 1834 - 1839
  • [9] Gas-solid flow characteristics of fluidized bed with binary particles
    Bai, Ling
    Zhao, Zhenjiang
    Lv, Wanning
    Zhou, Ling
    POWDER TECHNOLOGY, 2023, 416
  • [10] Chaotic characteristics of gas-solid flow in a circulating fluidized bed
    Ji, H
    Ohara, H
    Tsutsumi, A
    Yoshida, K
    FLUIDIZATION IX, 1998, : 605 - 612