A Non-Symmetric Kesten Criterion and Ratio Limit Theorem for Random Walks on Amenable Groups

被引:0
|
作者
Dougall, Rhiannon [1 ]
Sharp, Richard [2 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
[2] Univ Warwick, Math Inst, Coventry CV4 7AL, England
关键词
THERMODYNAMIC FORMALISM; MARKOV; EXISTENCE;
D O I
10.1093/imrn/rnae014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider random walks on countable groups. A celebrated result of Kesten says that the spectral radius of a symmetric walk (whose support generates the group as a semigroup) is equal to one if and only if the group is amenable. We give an analogue of this result for walks that are not symmetric. We also conclude a ratio limit theorem for amenable groups.
引用
收藏
页码:6209 / 6223
页数:15
相关论文
共 50 条
  • [1] LOCAL LIMIT THEOREM FOR SYMMETRIC RANDOM WALKS IN GROMOV-HYPERBOLIC GROUPS
    Gouezel, Sebastien
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 27 (03) : 893 - 928
  • [2] Local limit theorem for random walks on symmetric spaces
    Kogler, Constantin
    JOURNAL D ANALYSE MATHEMATIQUE, 2025,
  • [4] A RATIO LIMIT THEOREM FOR SYMMETRIC RANDOM WALK
    KESTEN, H
    JOURNAL D ANALYSE MATHEMATIQUE, 1970, 23 : 199 - &
  • [5] Central Limit Theorems for Non-Symmetric Random Walks on Nilpotent Covering Graphs: Part II
    Satoshi Ishiwata
    Hiroshi Kawabi
    Ryuya Namba
    Potential Analysis, 2021, 55 : 127 - 166
  • [6] Central limit theorems for non-symmetric random walks on nilpotent covering graphs: Part I
    Ishiwata, Satoshi
    Kawabi, Hiroshi
    Namba, Ryuya
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 46
  • [7] Central Limit Theorems for Non-Symmetric Random Walks on Nilpotent Covering Graphs: Part II
    Ishiwata, Satoshi
    Kawabi, Hiroshi
    Namba, Ryuya
    POTENTIAL ANALYSIS, 2021, 55 (01) : 127 - 166
  • [8] Long time asymptotes of non-symmetric random walks on crystal lattices
    Ishiwata, Satoshi
    Kawabi, Hiroshi
    Kotani, Motoko
    JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (04) : 1553 - 1624
  • [9] Amenable groups, isoperimetric profiles and random walks
    Pittet, C
    Saloff-Coste, L
    GEOMETRIC GROUP THEORY DOWN UNDER, 1999, : 293 - 316
  • [10] LIMIT RATIO THEOREM FOR RANDOM-WALK ON GROUPS
    NARIMANYAN, SM
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1975, (06): : 17 - 24