Parallel matrix-free polynomial preconditioners with application to flow simulations in discrete fracture networks

被引:1
|
作者
Bergamaschi, L. [1 ]
Ferronato, M. [1 ]
Isotton, G. [2 ]
Janna, C. [1 ]
Martinez, A. [3 ]
机构
[1] Univ Padua, Dept Civil Environm & Architectural Engn ICEA, Padua, Italy
[2] Univ Padua, M3E Math Methods & Models Engn, Padua, Italy
[3] Univ Trieste, Dept Math & Geosci, Trieste, Italy
关键词
Polynomial preconditioner; Conjugate gradient method; Discrete fracture network; Parallel computing; Scalability; INVERSE; GMRES;
D O I
10.1016/j.camwa.2023.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop a robust matrix-free, communication avoiding parallel, high-degree polynomial preconditioner for the Conjugate Gradient method for large and sparse symmetric positive definite linear systems. We discuss the selection of a scaling parameter aimed at avoiding unwanted clustering of eigenvalues of the preconditioned matrices at the extrema of the spectrum. We use this preconditioned framework to solve a 3 x 3 block system arising in the simulation of fluid flow in large-size discrete fractured networks. We apply our polynomial preconditioner to a suitable Schur complement related with this system, which can not be explicitly computed because of its size and density. Numerical results confirm the excellent properties of the proposed preconditioner up to very high polynomial degrees. The parallel implementation achieves satisfactory scalability by taking advantage from the reduced number of scalar products and hence of global communications.
引用
收藏
页码:60 / 70
页数:11
相关论文
共 50 条
  • [1] Matrix-free constructions of circulant and block circulant preconditioners
    Yang, C
    Ng, EG
    Penczek, PA
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2004, 11 (8-9) : 773 - 793
  • [2] Towards effective flow simulations in realistic discrete fracture networks
    Berrone, Stefano
    Pieraccini, Sandra
    Scialo, Stefano
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 310 : 181 - 201
  • [3] Input and benchmarking data for flow simulations in discrete fracture networks
    Fumagalli, Alessio
    Keilegavlen, Eirik
    Scialo, Stefano
    [J]. DATA IN BRIEF, 2018, 21 : 1135 - 1139
  • [4] Fast and robust flow simulations in discrete fracture networks with GPGPUs
    Berrone, S.
    D'Auria, A.
    Vicini, F.
    [J]. GEM-INTERNATIONAL JOURNAL ON GEOMATHEMATICS, 2019, 10 (01)
  • [5] Fast and robust flow simulations in discrete fracture networks with GPGPUs
    S. Berrone
    A. D’Auria
    F. Vicini
    [J]. GEM - International Journal on Geomathematics, 2019, 10
  • [6] High-order matrix-free incompressible flow solvers with GPU acceleration and low-order refined preconditioners
    Franco, Michael
    Camier, Jean-Sylvain
    Andrej, Julian
    Pazner, Will
    [J]. COMPUTERS & FLUIDS, 2020, 203
  • [7] Matrix-free multigrid block-preconditioners for higher order discontinuous Galerkin discretisations
    Bastian, Peter
    Mueller, Eike Hermann
    Muething, Steffen
    Piatkowski, Marian
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 394 : 417 - 439
  • [8] PARALLEL MESHING, DISCRETIZATION, AND COMPUTATION OF FLOW IN MASSIVE DISCRETE FRACTURE NETWORKS
    Berrone, S.
    Scialo, S.
    Vicini, F.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : C317 - C338
  • [9] Matrix-free anisotropic slope tomography: Theory and application
    Tavakoli, Borhan F.
    Operto, Stephane
    Ribodetti, Alessandra
    Virieux, Jean
    [J]. GEOPHYSICS, 2019, 84 (01) : R21 - R43
  • [10] Matrix-free anisotropic slope tomography: Theory and application
    Tavakoli F., Borhan
    Operto, Stéphane
    Ribodetti, Alessandra
    Virieux, Jean
    [J]. Geophysics, 2019, 84 (01):