CNN-based Indian medicinal leaf type identification and medical use recommendation

被引:1
|
作者
Praveena, S. [1 ]
Pavithra, S. M. [1 ]
Kumar, A. Dalvin Vinoth [2 ]
Veeresha, P. [1 ]
机构
[1] CHRIST, Dept Math, Bengaluru 560029, India
[2] CHRIST, Dept Stat & Data Sci, Bengaluru 560029, India
来源
NEURAL COMPUTING & APPLICATIONS | 2024年 / 36卷 / 10期
关键词
Convolution neural network; Graphical user interface; Gradio; Confusion matrix;
D O I
10.1007/s00521-023-09352-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medicinal leaves are playing a vital role in our everyday life. There are an enormous amount of species present in the world. Identification of each type would be a tedious task. Using image processing technology, we can overcome this problem by providing computer vision with the help of a convolution neural network (CNN). The objective of this research is to find out the best CNN model that helps in classifying the plant leaf species and identifying its category. In this research work, the proposed basic CNN model consisting of four convolution layers uses ten different medicinal leaf species each belonging to two categories providing an accuracy of 96.88%.
引用
收藏
页码:5399 / 5412
页数:14
相关论文
共 50 条
  • [1] CNN-based Indian medicinal leaf type identification and medical use recommendation
    S. Praveena
    S. M. Pavithra
    A. Dalvin Vinoth Kumar
    P. Veeresha
    Neural Computing and Applications, 2024, 36 : 5399 - 5412
  • [2] Hybrid CNN-based Recommendation System
    Alrashidi, Muhammad
    Ibrahim, Roliana
    Selamat, Ali
    BAGHDAD SCIENCE JOURNAL, 2024, 21 (02) : 592 - 599
  • [3] CNN-based medicinal plant identification and classification using optimized SVM
    Diwedi, Himanshu Kumar
    Misra, Anuradha
    Tiwari, Amod Kumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (11) : 33823 - 33853
  • [4] CNN-based medicinal plant identification and classification using optimized SVM
    Himanshu Kumar Diwedi
    Anuradha Misra
    Amod Kumar Tiwari
    Multimedia Tools and Applications, 2024, 83 : 33823 - 33853
  • [5] CNN-based algorithm for drusen identification
    Checco, Paolo
    Corinto, Fernando
    2006 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, PROCEEDINGS, 2006, : 2181 - +
  • [6] CNN-based fish iris identification
    Schraml, Rudolf
    Wimmer, Georg
    Hofbauer, Heinz
    Jalilian, Ehsaneddin
    Bekkozhayeva, Dinara
    Cisar, Petr
    Uhl, Andreas
    2022 30TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2022), 2022, : 628 - 632
  • [7] A CNN-based vortex identification method
    Liang Deng
    Yueqing Wang
    Yang Liu
    Fang Wang
    Sikun Li
    Jie Liu
    Journal of Visualization, 2019, 22 : 65 - 78
  • [8] A CNN-based vortex identification method
    Deng, Liang
    Wang, Yueqing
    Liu, Yang
    Wang, Fang
    Li, Sikun
    Liu, Jie
    JOURNAL OF VISUALIZATION, 2019, 22 (01) : 65 - 78
  • [9] CNN-Based Fast Source Device Identification
    Mandelli, Sara
    Cozzolino, Davide
    Bestagini, Paolo
    Verdoliva, Luisa
    Tubaro, Stefano
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1285 - 1289
  • [10] A CNN-Based Automated Stuttering Identification System
    Prabhu, Yash
    Seliya, Naeem
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1601 - 1605