Electro-nanofiltration membranes with high Li+/Mg2+ selectivity prepared via sequential interfacial polymerization

被引:17
|
作者
Chen, Jiashuai
Wang, Jing [1 ]
Ji, Zhi-Yong
Guo, Zhiyuan
Zhang, Panpan
Huang, Zhihui
机构
[1] Technol Hebei Univ Technol, Engn Res Ctr Seawater Utilizat, Sch Chem Engn, Minist Educ, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrodialysis; Electro-nanofiltration membranes; Sequential interfacial polymerization; Lithium extraction; CATION-EXCHANGE MEMBRANE; COVALENT IMMOBILIZATION; COMPOSITE MEMBRANES; POLYAMIDE; LITHIUM; LAYER; ELECTRODIALYSIS; SEPARATION; MAGNESIUM; IONS;
D O I
10.1016/j.desal.2022.116312
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With the rapid development of batteries and other industries, the demand for lithium has exploded. As about 70 wt% of the lithium resources exist in brines, the extraction of lithium by selective electrodialysis (S-ED) has attracted extensive attention. However, the similar hydrated ionic radius of Li+ and Mg2+ caused many challenges. Herein, a simple sequential interfacial polymerization (SIP) method was developed to adjust the surface charge and pore size of the electro-nanofiltration membranes (ENFMs), and the ENFMs were endowed with excellent selectivity due to the electrostatic repulsion and pore-size sieving effect. Polyethyleneimine (PEI) with different molecular weights was used for the SIP process based on the nascent polyamide separation layer prepared by interfacial polymerization. With the increase of the PEI molecular weight, the zeta potential of the membrane surface changed from negative to positive, while the pore size of the membranes also decreased. The optimal ENFMs achieved outstanding selectivity for Li+/Mg2+ (16.55) and high Li+ flux (3.08 x 10(-8) mol.cm(-2).s(-1)) at a current density of 10 mA.cm(-2). Moreover, the optimal ENFMs exhibited high limiting current density (50.6 mA.cm(-2)) and low membrane electrical resistance (2.42 Omega.cm(2)), which has a great potential to be used for practical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Preparation of Electro- nanofiltration Membranes with High Li+/Mg2+ Separation Performance via Sequential Interfacial Polymerization
    Liu, Huili
    Wang, Jing
    Chen, Jiashuai
    Song, Zhihao
    Jiang, Yumeng
    Guo, Zhiyuan
    Zhang, Panpan
    Ji, Zhiyong
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2024, 45 (06):
  • [2] Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation
    Wu, Ming-Bang
    Ye, Hao
    Zhu, Zhi-Yuan
    Chen, Guo-Tao
    Ma, Lu-Lin
    Liu, Shi-Cheng
    Liu, Lin
    Yao, Juming
    Xu, Zhi-Kang
    JOURNAL OF MEMBRANE SCIENCE, 2022, 644
  • [3] Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation
    Wu, Ming-Bang
    Ye, Hao
    Zhu, Zhi-Yuan
    Chen, Guo-Tao
    Ma, Lu-Lin
    Liu, Shi-Cheng
    Liu, Lin
    Yao, Juming
    Xu, Zhi-Kang
    Journal of Membrane Science, 2022, 644
  • [4] Tuning composite nanofiltration membranes with γ-cyclodextrin for improved Mg2+/Li+ selectivity
    Li, Nan
    Zhang, Tiancan
    Xue, Weihao
    Zhao, Ying
    Zhu, Bo
    Pei, Xiaoyuan
    Xu, Zhiwei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 330
  • [5] Crown ether-functionalized nanofiltration membranes with high ions selectivity for Li+/Mg2+ separation
    Jiang, Chi
    Bai, Shibo
    Li, Jiawang
    Wang, Ming
    Zhou, Yan
    Hou, Yingfei
    JOURNAL OF MEMBRANE SCIENCE, 2025, 714
  • [6] Positively charged nanofiltration membranes for efficient Mg2+/Li+ separation from high Mg2+/Li+ ratio brine
    Zhao, Guoke
    Zhang, Yang
    Li, Yu
    Pan, Guoyuan
    Liu, Yiqun
    ADVANCED MEMBRANES, 2023, 3
  • [7] High flux Mg2+/Li+ nanofiltration membranes prepared by surface modification of polyethylenimine thin film composite membranes
    Luo, Hao
    Peng, Huawen
    Zhao, Qiang
    APPLIED SURFACE SCIENCE, 2022, 579
  • [8] Polyamide composite nanofiltration membrane via a combination of polydopamine grafting and reverse interfacial polymerization for high Mg2+/Li+ separation capacity
    Yu, Dongsheng
    Li, Min
    Zhou, Huacong
    Liang, Xiangfeng
    Shou, Qinghui
    Liu, Huizhou
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
  • [9] Regulating structure of nanofiltration membrane via bi-directional interfacial polymerization for enhanced Li+/Mg2+ separation
    Dong, Jian
    Wang, Yi
    Dong, Liangliang
    Kaneko, Tatsuo
    Dong, Weifu
    Shi, Dongjian
    Chen, Mingqing
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 69
  • [10] Aligned amino-functionalized γ-cyclodextrin nanofiltration membrane via customized interfacial polymerization for precise Li+/Mg2+ separation
    Zhao, Yanli
    Cao, Ziqi
    Liang, Yanxiang
    Liang, Zhichen
    Ling, Keyin
    Zhou, Feiyan
    Guo, Changsheng
    Qian, Yao
    Liu, Pengbi
    Liu, Xi
    Wang, Chunguang
    Zhang, Mengchen
    Zhang, Qinglei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363