A MODIFIED INVERSE-FREE DYNAMICAL SYSTEM FOR ABSOLUTE VALUE EQUATIONS

被引:2
|
作者
Han, Xin [1 ,2 ]
He, Xing [1 ]
Chen, Jiawei [3 ]
Ju, Xingxing [4 ]
机构
[1] Southwest Univ, Sch Elect & Informat Engn, Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing, Peoples R China
[2] Sichuan Univ Arts & Sci, Coll Math, Dazhou, Peoples R China
[3] Southwest Univ, Sch Math & Stat, Chongqing, Peoples R China
[4] Sichuan Univ, Coll Elect & Informat Engn, Chengdu, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2023年 / 7卷 / 06期
基金
中国国家自然科学基金;
关键词
Absolute value equations; Modified inverse-free dynamical system; Global error bound; Sublinear convergence; Exponential convergence; NEURAL-NETWORK; ITERATION METHOD; MODEL;
D O I
10.23952/jnva.7.2023.6.02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a novel inverse-free dynamical system for tackling absolute value equations. The proposed dynamical system is an extension of the inverse-free dynamical system designed by Chen et al. (Appl. Numer. Math. 168 (2021), 170-181). A new global error bound for absolute value equation is obtained, which is more compact than the existing ones. The equilibrium point of the proposed dynamical system is proved to be the solution to the corresponding absolute value equation. In contrast to some existing dynamical systems, the distinctive feature of our dynamical system is its simple structure, inverse-free operation, and global sublinear and exponential convergence. Finally, numerical results are provided to demonstrate the effectiveness of our dynamical system.
引用
收藏
页码:909 / 923
页数:15
相关论文
共 50 条
  • [1] An inverse-free dynamical system for solving the absolute value equations
    Chen, Cairong
    Yang, Yinong
    Yu, Dongmei
    Han, Deren
    APPLIED NUMERICAL MATHEMATICS, 2021, 168 : 170 - 181
  • [2] AN INERTIAL INVERSE-FREE DYNAMICAL SYSTEM FOR SOLVING ABSOLUTE VALUE EQUATIONS
    Yu, Dongmei
    Chen, Cairong
    Yang, Yinong
    Han, Deren
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2023, 19 (04) : 2549 - 2559
  • [3] Unified Single-Layer Inverse-Free Neurodynamic Network for Solving Absolute Value Equations
    Han, Xin
    He, Xing
    Ju, Xingxing
    Chen, Jiawei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (03) : 1166 - 1170
  • [4] OleF: an Inverse-Free Online Cipher An Online SPRP with an Optimal Inverse-Free Construction
    Bhaumik, Ritam
    Nandi, Mridul
    IACR TRANSACTIONS ON SYMMETRIC CRYPTOLOGY, 2016, 2016 (02) : 30 - 51
  • [5] An inverse-free directional newton method for solving systems of nonlinear equations
    Levin, Y
    Ben-Israel, A
    PROGRESS IN ANALYSIS, VOLS I AND II, 2003, : 1447 - 1457
  • [6] A New Fixed-Time Dynamical System for Absolute Value Equations
    Li, Xuehua
    Yu, Dongmei
    Yang, Yinong
    Han, Deren
    Chen, Cairong
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2023, 16 (03): : 622 - 633
  • [7] INVERSE-FREE NEWTON'S METHOD
    Massalski, Marcin
    Nockowska-Rosiak, Magdalena
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2025, 15 (04): : 2238 - 2257
  • [8] Approximate inverse-free preconditioners for Toeplitz matrices
    Wen, You-Wei
    Ching, Wai-Ki
    Ng, Michael
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (16) : 6856 - 6867
  • [9] A modified fixed point iteration method for solving the system of absolute value equations
    Yu, Dongmei
    Chen, Cairong
    Han, Deren
    OPTIMIZATION, 2022, 71 (03) : 449 - 461
  • [10] A Biparametric Family of Inverse-Free Multipoint Iterations
    Ezquerro, J. A.
    Gutierrez, J. M.
    Hernandez, M. A.
    Salanova, M. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2000, 19 (01): : 109 - 124