Hierarchical porous CS@Ce-MnO2 as cathode for energy-dense and long-cycling flexible aqueous zinc-ion batteries

被引:18
|
作者
Yu, Baozhu [1 ,2 ]
Lu, Leilei [1 ]
He, Yuting [2 ]
Dai, Xin [2 ]
Wang, Yi [2 ]
Wang, Tian [2 ]
Chong, Shaokun [4 ,5 ]
Liu, Liting [3 ]
Liu, Yongning [2 ]
Tan, Qiang [2 ]
机构
[1] Xian Univ Technol, Dept Appl Chem, Xian 710048, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[3] Northwestern Polytech Univ, Analyt & Testing Ctr, Xian 710072, Peoples R China
[4] Northwestern Polytech Univ, Xian Inst Flexible Elect IFE, Frontiers Sci Ctr Flexible Elect FSCFE, Xian 710072, Peoples R China
[5] Northwestern Polytech Univ, Xian Inst Biomed Mat & Engn, Xian 710072, Peoples R China
关键词
Zn-ion battery; Flexible battery; H+/Zn2+insertion; Carbon Sphere; MnO2; nanosheet; Core-shell structure; NANOPARTICLES; MECHANISM; CARBON;
D O I
10.1016/j.jcis.2023.10.009
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Aqueous zinc-ion batteries (ZIBs) have been considered one of the most promising flexible chemical power sources, because of their affordable cost, absolute security, and lightweight. However, the development of flexible aqueous ZIBs has been hindered by cathode materials due to their unsatisfied capacity, unstable structure, and ambiguous electrochemical energy storage mechanism. To address the above issues, a high-performance manganese cerium -doped dioxide-based core-shell hybrid structure cathode (CS@Ce-MnO2) has been successfully prepared via a facile low-temperature liquid-phase reaction strategy. Benefit from the delicately designed hierarchical carbon spheres core and cerium-doped manganese dioxide nanosheets shell structure, the capacity and stability of CS@Ce-MnO2 based flexible ZIBs has been dramatically improved, and the origin of the improved electrochemical performance and storage mechanism was demonstrated by electrochemical methods and ex-site x-ray diffraction (XRD) and scanning electron microscopy (SEM). The principal reason for the high reversible specific capacity is the plausible Zn2+ and H+coinsertion/extraction, while the porous structure of the carbon spheres contributes to the improved electron conduction and ion transport in the MnO2 matrix. This work provides a new opportunity for high-performance flexible aqueous zinc-ion batteries.
引用
收藏
页码:56 / 65
页数:10
相关论文
共 50 条
  • [1] Preparation of α-MnO2 Nanorods/Porous Carbon Cathode for Aqueous Zinc-ion Batteries
    Li, Yanli
    Yu, Dandan
    Lin, Sen
    Sun, Dongfei
    Lei, Ziqiang
    ACTA CHIMICA SINICA, 2021, 79 (02) : 200 - 207
  • [2] ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries
    Zhao, Wenyu
    Kong, Qingquan
    Wu, Xiaoqiang
    An, Xuguang
    Zhang, Jing
    Liu, Xiaonan
    Yao, Weitang
    APPLIED SURFACE SCIENCE, 2022, 605
  • [3] Facile Zn2+ Desolvation Enabled by Local Coordination Engineering for Long-Cycling Aqueous Zinc-Ion Batteries
    Ding, Liyan
    Wang, Lei
    Gao, Jiechang
    Yan, Tianran
    Li, Hongtai
    Mao, Jing
    Song, Fei
    Fedotov, Stanislav
    Chang, Luo-Yueh
    Li, Ning
    Su, Yuefeng
    Liu, Tiefeng
    Zhang, Liang
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (32)
  • [4] The effect of copper doping in α-MnO 2 as cathode material for aqueous Zinc-ion batteries
    Lan, Rong
    Roberts, Alexander
    Gkanas, Evangelos
    Sahib, Ali Jawad Sahib
    Greszta, Agata
    Bhagat, Rohit
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 992
  • [5] Ε-MnO2@C cathode with high stability for aqueous zinc-ion batteries
    Zhao, Wenyu
    Kong, Qingquan
    Wu, Xiaoqiang
    An, Xuguang
    Zhang, Jing
    Liu, Xiaonan
    Yao, Weitang
    Applied Surface Science, 2022, 605
  • [6] Fabrication of a Robust and Porous MnO2 Electrode as the Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Nie, Nantian
    Wang, Fuliang
    Yao, Wenhao
    ENERGY TECHNOLOGY, 2023, 11 (12)
  • [7] Porous CuO Microspheres as Long-Lifespan Cathode Materials for Aqueous Zinc-Ion Batteries
    Ai, Yuqing
    Pang, Qiang
    Liu, Xinyu
    Xin, Fangyun
    Wang, Hong
    Xing, Mingming
    Fu, Yao
    Tian, Ying
    NANOMATERIALS, 2024, 14 (13)
  • [8] MnO2Heterostructure on Carbon Nanotubes as Cathode Material for Aqueous Zinc-Ion Batteries
    Khamsanga, Sonti
    Nguyen, Mai Thanh
    Yonezawa, Tetsu
    Thamyongkit, Patchanita
    Pornprasertsuk, Rojana
    Pattananuwat, Prasit
    Tuantranont, Adisorn
    Siwamogsatham, Siwaruk
    Kheawhom, Soorathep
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (13)
  • [9] Dissolution-Redeposition Mechanism of the MnO2 Cathode in Aqueous Zinc-Ion Batteries
    Wu, Tzu-Ho
    Lin, Ya-Qi
    Althouse, Zachary D.
    Liu, Nian
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (11) : 12267 - 12274
  • [10] 3D printing of customized MnO2 cathode for aqueous zinc-ion batteries
    Liu, Zhen
    He, Han-bing
    Luo, Ze-xiang
    Wang, Xiao-feng
    Zheng, Jing
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2023, 33 (04) : 1193 - 1204