Investigations on energy efficiency enhancement under knock threshold limit conditions for a turbocharged direct-injection spark-ignition engine fueled with wet ethanol

被引:2
|
作者
de Lima, Alessandro J. T. B. [1 ]
Gallo, Waldyr L. R. [1 ]
机构
[1] Univ Estadual Campinas, Fac Engn Mecan, Cidade Univ Zeferino Vaz, BR-13083860 Campinas, Brazil
关键词
Direct-injection spark-ignition engine; Wet ethanol; Droplets & sprays evaporation; Exergy; OPTIMAL OPERATING-CONDITIONS; INTERNAL-COMBUSTION ENGINES; DROPLET VAPORIZATION; MODEL; IRREVERSIBILITIES; CYCLE;
D O I
10.1016/j.applthermaleng.2023.121003
中图分类号
O414.1 [热力学];
学科分类号
摘要
Wet ethanol is a promising biofuel whose properties fit with turbocharged direct-injection spark-ignition (DISI) engines for countries with yearly production capacity. Even though it has a higher life-cycle efficiency than regular ethanol, which reduces significantly the energy required on ethanol production, wet ethanol's potential is wasted by the continuous dehydration process. In order to highlight such potential as a fuel for engines, this study investigates the early injection of different blends of wet ethanol (E100W0, E95W5, E90W10, and E80W20, respectively) via an in-house engine simulator to improve engine operating conditions - enhancing engine and ethanol's life-cycle efficiencies. This study searched for the highest sustainable values of engine energy and exergy efficiencies based on the threshold value of the knock index number. The combustion phasing model used correlations obtained from a machine learning algorithm fed with experimental data for a DISI engine. This investigation provided 120 different cases under different compression ratios (r), engine speeds, relative air-fuel ratios, and wet ethanol blends. Results showed that E80W20 can operate with a turbocharger at r = 18. The highest efficiencies (43% and 40%, respectively) were found for E90W10 and E80W20 - values 30% higher than regular Brazilian FFV. Lastly, cases involving the best conditions for torque, lean air-fuel conditions at high compression ratios and water content, and downspeeding are presented as interesting alternatives to either stationary engines or hybrid vehicles, therefore highlighting the potential of wet ethanol for DI engines.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Fuel property effects on knock propensity and thermal efficiency in a direct-injection spark-ignition engine
    Yue, Zongyu
    Som, Sibendu
    APPLIED ENERGY, 2021, 281
  • [2] Effects of Various Lubricants and Fuels on Pre-Ignition in a Turbocharged Direct-Injection Spark-Ignition Engine
    Park, Sangki
    Woo, Seungchul
    Oh, Heechang
    Lee, Kihyung
    ENERGY & FUELS, 2017, 31 (11) : 12701 - 12711
  • [3] A Comparison of Ethanol and Butanol as Oxygenates Using a Direct-Injection, Spark-Ignition Engine
    Wallner, Thomas
    Miers, Scott A.
    McConnell, Steve
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2009, 131 (03):
  • [4] A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine
    Argonne National Laboratory, Argonne, IL 60439, United States
    J. Eng. Gas Turbines Power, 2009, 3
  • [5] Investigating the Cyclic Variability of a Multi-cylinder Turbocharged Direct-Injection Spark-Ignition Engine Fueled with E10
    Min Allah, Fazal Um
    Rufino, Caio Henrique
    Zabeu, Clayton Barcelos
    Ribeiro Gallo, Waldyr Luiz
    30TH SIAR INTERNATIONAL CONGRESS OF AUTOMOTIVE AND TRANSPORT ENGINEERING: SCIENCE AND MANAGEMENT OF AUTOMOTIVE AND TRANSPORTATION ENGINEERING, 2020, : 113 - 123
  • [6] Mixture formation enhancement in a direct-injection spark-ignition engine using horizontal injection
    Yang, Yubeen
    Yu, Young Soo
    Jeong, Minuk
    Park, Sungwook
    FUEL, 2022, 326
  • [7] A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine
    Argonne National Laboratory, Argonne, IL 60439, United States
    J. Eng. Gas Turbines Power, 2009, 3 (1-9):
  • [8] EFFECTS OF BLENDING GASOLINE WITH ETHANOL AND BUTANOL ON ENGINE EFFICIENCY AND EMISSIONS USING A DIRECT-INJECTION, SPARK-IGNITION ENGINE
    Cooney, Christopher
    Wallner, Thomas
    McConnell, Steve
    Gillen, Jeffrey C.
    Abell, Clint
    Miers, Scott A.
    Naber, Jeffrey D.
    PROCEEDINGS OF THE 2009 SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION, 2009, : 157 - 165
  • [9] A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition (DISI) engine
    Wallner, Thomas
    Miers, Scott A.
    McConnell, Steve
    PROCEEDINGS OF THE SPRING TECHNICAL CONFERENCE OF THE ASME INTERNAL COMBUSTION ENGINE DIVISION, 2008, : 129 - 139
  • [10] Impact of ethanol blending on particulate emissions from a spark-ignition direct-injection engine
    Sakai, Stephen
    Rothamer, David
    FUEL, 2019, 236 : 1548 - 1558