In Situ Temperature-Modulated Electrochemical Surface-Enhanced Raman Spectroscopy Study of the Effect of *CO on Metal Surface

被引:3
|
作者
Wang, Xu [1 ,2 ]
Zhang, Yuhua [4 ]
Shi, Jihua [1 ,2 ]
Cai, Jiaofeng [1 ,2 ]
Liu, Guokun [3 ]
Tang, Jing [1 ,2 ]
机构
[1] Fuzhou Univ, Coll Chem, Key Lab Analyt Sci Food Safety & Biol, Minist Educ, Fuzhou 350116, Peoples R China
[2] Fujian Prov Key Lab Electrochem Energy Storage Mat, Fuzhou 350108, Peoples R China
[3] Xiamen Univ, Coll Environm & Ecol, State Key Lab Marine Environm Sci, Xiamen 361002, Peoples R China
[4] Fuzhou Univ, Coll Chem, State Key Lab Photocatalysis Energy & Environm, Fuzhou, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2023年 / 127卷 / 27期
基金
中国国家自然科学基金;
关键词
ETHANOL OXIDATION; METHANOL; PLATINUM; PD; NANOPARTICLES; ELECTRODE; CARBON; ELECTROOXIDATION; AU; ELECTROREDUCTION;
D O I
10.1021/acs.jpcc.3c02692
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We used a high-frequency heating technique combined withelectrochemicalsurface-enhanced Raman spectroscopy to study the temperature-dependentelectrooxidation reaction of methanol/ethanol and electrochemicalcarbon dioxide reduction (CO2RR). The results showed thatwith the increase of temperature, the Raman intensity of Pt-Cslowly decreased, indicating that the high temperature favors theoxidative desorption of *CO on the Pt surface to promote the catalyticreaction. Meanwhile, during the process of CO2 to CO onPd, the ratio of linearly bonded CO (weak adsorption) to bridge-bondedCO (strong adsorption) gradually increased with increasing temperature,indicating that the high temperature facilitated the desorption of*CO on the Pd surface and reduced the toxicity of CO. The presentresults provide a molecular-level insight into the effect of temperaturemodulation on *CO on the Pt surface (alcohol oxidation) and the Pdsurface (CO2RR), which can deepen the understanding ofthe interfacial redox mechanism.
引用
收藏
页码:13034 / 13043
页数:10
相关论文
共 50 条
  • [1] In situ electrochemical surface-enhanced Raman spectroscopy study of CO electrooxidation on PtFe nanocatalysts
    Liang, Miao-Miao
    Wang, Ya-Hao
    Shao, Rui
    Yang, Wei-Min
    Zhang, Hong
    Zhang, Hua
    Yang, Zhi-Lin
    Li, Jian-Feng
    Tian, Zhong-Qun
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 81 : 38 - 42
  • [2] In-situ electrochemical surface-enhanced Raman spectroscopy in metal/polyelectrolyte interfaces
    Wu, Li-Wen
    Huang, Mo-Li
    Yang, Yun-Xiao
    Huang, Yi-Fan
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (11) : 2820 - 2825
  • [3] Electrochemical surface-enhanced Raman spectroscopy
    Brosseau, Christa L.
    Colina, Alvaro
    Perales-Rondon, Juan V.
    Wilson, Andrew J.
    Joshi, Padmanabh B.
    Ren, Bin
    Wang, Xiang
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [4] Electrochemical surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 3
  • [5] Electrochemical surface-enhanced Raman spectroscopy of nanostructures
    Wu, De-Yin
    Li, Jian-Feng
    Ren, Bin
    Tian, Zhong-Qun
    CHEMICAL SOCIETY REVIEWS, 2008, 37 (05) : 1025 - 1041
  • [6] Quantum Chemistry Study of Electrochemical Surface-enhanced Raman Spectroscopy
    Pang Ran
    Jin Xi
    Zhao Liubin
    Ding Songyuan
    Wu Deyin
    Tian Zhongqun
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (11): : 2087 - 2098
  • [7] In situ surface-enhanced Raman spectroscopy study of interfacial catalytic reaction of bifunctional metal nanoparticles
    Chong, Ju
    Cao, Jianrui
    Wang, Sulian
    Huang, Mingju
    RUSSIAN CHEMICAL BULLETIN, 2024, 73 (09) : 2632 - 2639
  • [8] Surface-enhanced Raman Spectroscopy
    Tomoaki Nishino
    Analytical Sciences, 2018, 34 : 1061 - 1062
  • [9] Surface-enhanced Raman spectroscopy
    Nature Reviews Methods Primers, 1
  • [10] Surface-enhanced Raman spectroscopy
    Jürgen Popp
    Thomas Mayerhöfer
    Analytical and Bioanalytical Chemistry, 2009, 394 : 1717 - 1718