Deep Curriculum Learning for Follow-up MRI Registration in Glioblastoma

被引:0
|
作者
Banerjee, Subhashis [1 ]
Toumpanakis, Dimitrios [2 ]
Dhara, Ashis Kumar [3 ]
Wikstrom, Johan [2 ]
Strand, Robin [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Uppsala, Sweden
[2] Uppsala Univ, Dept Surg Sci, Radiol, Uppsala, Sweden
[3] Natl Inst Technol Durgapur, Dept Elect Engn, Durgapur, India
来源
MEDICAL IMAGING 2023 | 2023年 / 12464卷
关键词
MRI; registration; affine; deformable; curriculum learning;
D O I
10.1117/12.2654143
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a weakly supervised deep convolutional neural network-based approach to perform voxel-level 3D registration between subsequent follow-up MRI scans of the same patient. To handle the large deformation in the surrounding brain tissues due to the tumor's mass effect we proposed curriculum learning-based training for the network. Weak supervision helps the network to concentrate more focus on the tumor region and resection cavity through a saliency detection network. Qualitative and quantitative experimental results show the proposed registration network outperformed two popular state-of-the-art methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Automatic Registration of Follow-up Brain MRI Scans
    Demir, Ali
    Unal, Goezde
    Karaman, Kutlay
    [J]. BIYOMUT: 2009 14TH NATIONAL BIOMEDICAL ENGINEERING MEETING, 2009, : 509 - +
  • [2] The use of MRI, CT and SPECT registration for treatment planning and follow-up
    vanHerk, M
    Bruce, A
    deMunck, J
    Kwa, S
    Lebesque, JV
    Shouman, T
    Touw, A
    [J]. EUROPEAN JOURNAL OF CANCER, 1995, 31A : 28 - 28
  • [3] Automatic Registration of DCE-MRI Prostate Images for Follow-up Comparison
    van Straaten, D.
    Zamecnik, P.
    Boehler, T.
    Laue, H.
    Wirtz, S.
    Hahn, H. K.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 4: IMAGE PROCESSING, BIOSIGNAL PROCESSING, MODELLING AND SIMULATION, BIOMECHANICS, 2010, 25 : 1452 - 1455
  • [4] Apparent diffusion coefficient parametric response mapping MRI for follow-up of glioblastoma
    Ra Gyoung Yoon
    Ho Sung Kim
    Dae Yoon Kim
    Gil Sun Hong
    Sang Joon Kim
    [J]. European Radiology, 2016, 26 : 1037 - 1047
  • [5] Apparent diffusion coefficient parametric response mapping MRI for follow-up of glioblastoma
    Yoon, Ra Gyoung
    Kim, Ho Sung
    Kim, Dae Yoon
    Hong, Gil Sun
    Kim, Sang Joon
    [J]. EUROPEAN RADIOLOGY, 2016, 26 (04) : 1037 - 1047
  • [6] Unsupervised Learning for Large Motion Thoracic CT Follow-Up Registration
    Hering, Alessa
    Heldmann, Stefan
    [J]. MEDICAL IMAGING 2019: IMAGE PROCESSING, 2019, 10949
  • [7] A follow-up of medical graduates of a problem-based learning curriculum
    Antepohl, W
    Domeij, E
    Forsberg, P
    Ludvigsson, J
    [J]. MEDICAL EDUCATION, 2003, 37 (02) : 155 - 162
  • [8] Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration
    Zhang, Fan
    Wells, William M., III
    O'Donnell, Lauren J.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (06) : 1454 - 1467
  • [9] Deep learning-based deformable image registration with bilateral pyramid to align pre-operative and follow-up magnetic resonance imaging (MRI) scans
    Zhang, Jingjing
    Xie, Xin
    Cheng, Xuebin
    Li, Teng
    Zhong, Jinqin
    Hu, Xiaokun
    Sun, Lu
    Yan, Hui
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (07) : 4779 - 4791
  • [10] Liver registration for the follow-up of hepatic tumors
    Charnoz, A
    Agnus, V
    Malandain, G
    Forest, C
    Tajine, M
    Soler, L
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 2, 2005, 3750 : 155 - 162