Defect-Engineering-Stabilized AgSbTe2 with High Thermoelectric Performance

被引:70
|
作者
Zhang Yu [1 ]
Li Zhi [2 ]
Singh, Saurabh [1 ]
Nozariasbmarz, Amin [1 ]
Li Wenjie [1 ]
Genc, Aziz [3 ]
Xia, Yi [2 ]
Zheng Luyao [1 ]
Lee, Seng Huat [1 ]
Karan, Sumanta Kumar [1 ]
Goyal, Gagan K. [1 ]
Liu Na [1 ]
Mohan, Sanghadasa M. F. [4 ]
Mao Zhiqiang [1 ]
Cabot, Andreu [5 ,6 ]
Wolverton, Christopher [2 ]
Poudel, Bed [1 ]
Priya, Shashank [1 ]
机构
[1] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Izmir Inst Technol, Fac Engn, Dept Mat Sci & Engn, TR-35430 Izmir, Turkiye
[4] US Army Combat Capabil Dev Command, Aviat & Missile Ctr, Redstone Arsenal, AL 35898 USA
[5] Catalonia Inst Energy Res IREC, Barcelona 08930, Catalonia, Spain
[6] ICREA, Pg Lluis Companys, Barcelona 08010, Catalonia, Spain
关键词
defect engineering; AgSbTe2; band flattening; thermoelectrics; mid-temperature region; waste heat recovery; POWER-GENERATION; PHASE-TRANSITION; WASTE-HEAT; FIGURE; MERIT; EFFICIENCY;
D O I
10.1002/adma.202208994
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Thermoelectric (TE) generators enable the direct and reversible conversion between heat and electricity, providing applications in both refrigeration and power generation. In the last decade, several TE materials with relatively high figures of merit (zT) have been reported in the low- and high-temperature regimes. However, there is an urgent demand for high-performance TE materials working in the mid-temperature range (400-700 K). Herein, p-type AgSbTe2 materials stabilized with S and Se co-doping are demonstrated to exhibit an outstanding maximum figure of merit (zT(max)) of 2.3 at 673 K and an average figure of merit (zT(ave)) of 1.59 over the wide temperature range of 300-673 K. This exceptional performance arises from an enhanced carrier density resulting from a higher concentration of silver vacancies, a vastly improved Seebeck coefficient enabled by the flattening of the valence band maximum and the inhibited formation of n-type Ag2Te, and ahighly improved stability beyond 673 K. The optimized material is used to fabricate a single-leg device with efficiencies up to 13.3% and a unicouple TE device reaching energy conversion efficiencies up to 12.3% at a temperature difference of 370 K. These results highlight an effective strategy to engineer high-performance TE material in the mid-temperature range.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Enhanced thermoelectric performance of AgSbTe2 synthesized by high pressure and high temperature
    Su, Taichao
    Jia, Xiaopeng
    Ma, Hongan
    Yu, Fengrong
    Tian, Yongjun
    Zuo, Guihong
    Zheng, Youjin
    Jiang, Yiping
    Dong, Dan
    Deng, Le
    Qin, Bingke
    Zheng, Shizhao
    JOURNAL OF APPLIED PHYSICS, 2009, 105 (07)
  • [2] Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2
    Roychowdhury, Subhajit
    Ghosh, Tanmoy
    Arora, Raagya
    Samanta, Manisha
    Xie, Lin
    Singh, Niraj Kumar
    Soni, Ajay
    He, Jiaqing
    Waghmare, Umesh, V
    Biswas, Kanishka
    SCIENCE, 2021, 371 (6530) : 722 - +
  • [3] Realizing high power factor and thermoelectric performance in band engineered AgSbTe2
    Zhang, Yu
    Xing, Congcong
    Wang, Dongyang
    Genc, Aziz
    Lee, Seng Huat
    Chang, Cheng
    Li, Zhi
    Zheng, Luyao
    Lim, Khak Ho
    Zhu, Hangtian
    Smriti, Rabeya Bosry
    Liu, Yu
    Cheng, Shaobo
    Hong, Min
    Fan, Xiaolei
    Mao, Zhiqiang
    Zhao, Li-Dong
    Cabot, Andreu
    Zhu, Tiejun
    Poudel, Bed
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [4] Preparation and thermoelectric properties of AgSbTe2
    Noda, Y
    Nishida, IA
    Kang, YS
    Niino, M
    XVII INTERNATIONAL CONFERENCE ON THERMOELECTRICS, PROCEEDINGS ICT 98, 1998, : 350 - 353
  • [5] High thermoelectric figure of merit and nanostructuring in bulk AgSbTe2
    Xu, Jingjing
    Li, Han
    Du, Baoli
    Tang, Xinfeng
    Zhang, Qingjie
    Uher, Ctirad
    JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (29) : 6138 - 6143
  • [6] High-Performance Thermoelectric Energy Conversion: A Tale of Atomic Ordering in AgSbTe2
    Ghosh, Tanmoy
    Roychowdhury, Subhajit
    Dutta, Moinak
    Biswas, Kanishka
    ACS ENERGY LETTERS, 2021, 6 (08) : 2825 - 2837
  • [7] Doping Effects on the Thermoelectric Properties of AgSbTe2
    Jovovic, V.
    Heremans, J. P.
    JOURNAL OF ELECTRONIC MATERIALS, 2009, 38 (07) : 1504 - 1509
  • [8] Doping Effects on the Thermoelectric Properties of AgSbTe2
    V. Jovovic
    J. P. Heremans
    Journal of Electronic Materials, 2009, 38 : 1504 - 1509
  • [9] Sonochemicial Synthesis of AgSbTe2 Thermoelectric Compounds
    Xu Jing-Jing
    Du Bao-Li
    Zhang Wen-Hao
    Tang Xin-Feng
    JOURNAL OF INORGANIC MATERIALS, 2010, 25 (06) : 593 - 597
  • [10] Dual Alloying Enables High Thermoelectric Performance in AgSbTe2 by Manipulating Carrier Transport Behavior
    Zhang, Kaiqi
    Liu, Shuang
    Wang, Xincan
    Wu, Shuai
    Xiong, Qihong
    Wang, Xue
    Chen, Junqi
    Wang, Guiwen
    Zhang, Bin
    Fu, Huixia
    Han, Guang
    Wang, Guoyu
    Lu, Xu
    Zhou, Yun
    Zhou, Xiaoyuan
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (34)