K-means and DBSCAN for look-alike sound-alike medicines issue
被引:0
|
作者:
Moufok, Souad
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, AlgeriaUniv Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, Algeria
Moufok, Souad
[1
]
Mouattah, Anas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, AlgeriaUniv Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, Algeria
Mouattah, Anas
[1
]
Hachemi, Khalid
论文数: 0引用数: 0
h-index: 0
机构:
Univ Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, AlgeriaUniv Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, Algeria
Hachemi, Khalid
[1
]
机构:
[1] Univ Oran 2 Mohamed Ben Ahmed, Inst Maintenance & Ind Safety, BP 1015, Oran 31000, Algeria
The goal of this study is to analyse the application of data mining techniques in clustering drug names based on their spelling similarity in order to reduce the occurrence of dispensing errors caused by look-alike sound-alike medicine confusion, as they considered one of the most common causes of dispensing errors. Two unsupervised data mining methods, k-means and DBSCAN, were used in conjunction with two similarity measures, BiSim and Levenshtein. The results of the study showed that the approach is effective in identifying potential confusable medicines, with BiSim-based k-means clustering being favoured with a silhouette score of 0.5.
机构:
Curtin Univ, Sch Pharm, Curtin Hlth Innovat Res Ctr, Perth, WA 6845, Australia
Univ Queensland, Sch Pharm, St Lucia, Qld 4072, AustraliaCurtin Univ, Sch Pharm, Curtin Hlth Innovat Res Ctr, Perth, WA 6845, Australia
Emmerton, Lynne M.
Rizk, Mariam F. S.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Queensland, Sch Pharm, St Lucia, Qld 4072, AustraliaCurtin Univ, Sch Pharm, Curtin Hlth Innovat Res Ctr, Perth, WA 6845, Australia