An Integrated Fast Hough Transform for Multidimensional Data

被引:1
|
作者
Li, Yanhui [1 ]
Gan, Xiangchao [1 ]
机构
[1] Nanjing Agr Univ, Acad Adv Interdisciplinary Studies, Bioinformat Ctr, State Key Lab Crop Genet & Germplasm Enhancement &, Nanjing 210095, Jiangsu, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Hough Transform; multidimensional data; hyperplane detection; parameter space;
D O I
10.1109/TPAMI.2023.3269202
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Line, plane and hyperplane detection in multidimensional data has many applications in computer vision and artificial intelligence. We propose Integrated Fast Hough Transform (IFHT), a highly-efficient multidimensional Hough transform algorithm based on a new mathematical model. The parameter space of IFHT can be represented with a single k-tree to support hierarchical storage and "coarse-to-fine" search strategy. IFHT essentially changes the least square data-fitting in Li's Fast Hough transform (FHT) to the total least squares data-fitting, in which observational errors across all dimensions are taken into account, thus more practical and more resistant to data noise. It has practically resolved the problem of decreased precision of FHT for target objects mapped to boundaries between accumulators in the parameter space. In addition, it enables a straightforward visualization of the parameter space which not only provides intuitive insight on the number of objects in the data, but also helps with tuning the parameters and combining multiple instances if needed. In all simulated data with different levels of noise and parameters, IFHT surpasses Li's Fast Hough transform in terms of robustness and precision significantly.
引用
收藏
页码:11365 / 11373
页数:9
相关论文
共 50 条
  • [1] FAST GENERALIZED HOUGH TRANSFORM
    JENG, SC
    TSAI, WH
    PATTERN RECOGNITION LETTERS, 1990, 11 (11) : 725 - 733
  • [2] Fast Hough transform and pseudoinversion
    Donchenko, Vladimir S.
    Kirichenko, Nikolay F.
    Journal of Automation and Information Sciences, 2002, 34 (04) : 32 - 41
  • [3] A new fast hough transform
    Huang, XH
    Li, W
    Wang, M
    INTERNATIONAL SYMPOSIUM ON MULTISPECTRAL IMAGE PROCESSING, 1998, 3545 : 270 - 273
  • [4] FAST HOUGH TRANSFORM - A HIERARCHICAL APPROACH
    LI, HW
    LAVIN, MA
    LEMASTER, RJ
    COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1986, 36 (2-3): : 139 - 161
  • [5] A FAST HOUGH TRANSFORM FOR SEGMENT DETECTION
    GUIL, N
    VILLALBA, J
    ZAPATA, EL
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 1995, 4 (11) : 1541 - 1548
  • [6] Some Basic Invariant Properties of the Multidimensional Hough Transform
    Ilchev, Valeri
    Ilcheva, Zlatoliliya
    CYBERNETICS AND INFORMATION TECHNOLOGIES, 2007, 7 (02) : 45 - 56
  • [7] AN ADAPTIVE FAST TRANSFORM ALGORITHM FOR MULTIDIMENSIONAL DATA-COMPRESSION
    MORHAC, M
    MATOUSEK, V
    SIGNAL PROCESSING, 1995, 43 (01) : 29 - 37
  • [8] GENERATION ALGORITHMS OF FAST GENERALIZED HOUGH TRANSFORM
    Ershov, Egor I.
    Shvets, Evgeny A.
    Khanipov, Timur M.
    Nikolaev, Dmitry P.
    PROCEEDINGS - 31ST EUROPEAN CONFERENCE ON MODELLING AND SIMULATION ECMS 2017, 2017, : 534 - 538
  • [9] Development of Efficient Fault-tolerant Storage for Multidimensional Scientific Data Using the Hough Transform
    Kokoulin, Andrey N.
    Yuzhakov, Alexander A.
    Kiryanov, Dmitriy A.
    PROCEEDINGS OF THE 2017 IEEE RUSSIA SECTION YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING CONFERENCE (2017 ELCONRUS), 2017, : 690 - 694
  • [10] Fast Lane Detection with Randomized Hough Transform
    Saudi, Azali
    Teo, Jason
    Hijazi, Mohd Hanafi Ahmad
    Sulaiman, Jumat
    INTERNATIONAL SYMPOSIUM OF INFORMATION TECHNOLOGY 2008, VOLS 1-4, PROCEEDINGS: COGNITIVE INFORMATICS: BRIDGING NATURAL AND ARTIFICIAL KNOWLEDGE, 2008, : 2364 - +