The Schwarzian norm estimates for Janowski convex functions

被引:1
|
作者
Md Firoz, Ali [1 ]
Pal, Sanjit [1 ]
机构
[1] Natl Inst Technol Durgapur, Dept Math, Durgapur 713209, West Bengal, India
关键词
analytic functions; univalent functions; Janowski convex functions; Schwarzian norm;
D O I
10.1017/S0013091524000014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For $-1\leq B \lt A\leq 1$, let $\mathcal{C}(A,B)$ denote the class of normalized Janowski convex functions defined in the unit disk $\mathbb{D}:=\{z\in\mathbb{C}:|z| \lt 1\}$ that satisfy the subordination relation $1+zf''(z)/f'(z)\prec (1+Az)/(1+Bz)$. In the present article, we determine the sharp estimate of the Schwarzian norm for functions in the class $\mathcal{C}(A,B)$. The Dieudonne's lemma which gives the exact region of variability for derivatives at a point of bounded functions, plays the key role in this study, and we also use this lemma to construct the extremal functions for the sharpness by a new method.
引用
收藏
页码:299 / 315
页数:17
相关论文
共 50 条