Discovery of a novel potential polyphosphate accumulating organism without denitrifying phosphorus uptake function in an enhanced biological phosphorus removal process

被引:5
|
作者
Zhao, Yiming [1 ]
Zhu, Zhengyu [1 ]
Chen, Xuyang [1 ]
Li, Yongmei [1 ,2 ]
机构
[1] Tongji Univ, Coll Environm Sci & Engn, State Key Lab Pollut Control & Resource Reuse, Shanghai 200092, Peoples R China
[2] Shanghai Inst Pollut Control & Ecol Secur, Shanghai 200092, Peoples R China
关键词
Propioniciclava; Enhanced biological phosphorus removal; Polyphosphate accumulating organisms; Polyphosphate accumulating metabolism; Denitrifying phosphorus uptake; WASTE-WATER TREATMENT; CANDIDATUS-ACCUMULIBACTER; SP-NOV; ACTIVATED-SLUDGE; GEN; NOV; PHOSPHATE; BACTERIA; REACTOR; QUANTIFICATION; IDENTIFICATION;
D O I
10.1016/j.scitotenv.2023.168952
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Enhanced biological phosphorus removal (EBPR) is an effective process for phosphorus removal from wastewater. In this study, two lab-scale sequencing batch reactors (SBR) were used to perform EBPR process, in which genus Propioniciclava was unexpectedly accumulated and its relative abundance was over 70 %. A series of tests were conducted to explore the role of Propioniciclava in the two EBPR systems. The two systems performed steadily throughout the study, and the phosphorus removal efficiencies were 96.6 % and 93.5 % for SBR1 and SBR2, respectively. The stoichiometric analysis related to polyphosphate accumulating organisms (PAOs) indicated that polyphosphate accumulating metabolism (PAM) was achieved in the anaerobic phase. It appeared that the Propioniciclava-dominated systems could not perform denitrifying phosphorus removal. Instead, phosphorus was released under anoxic conditions without carbon sources. According to the genomic information from Integrated Microbial Genomes (IMG) database, Propioniciclava owns ppk1, ppk2 and ppx genes that are associated with phosphorus release and uptake functions. By phylogenetic investigation of communities by reconstruction of unobserved states 2 (PICRUSt2) analysis, the abundance of genes related to phosphorus metabolism was much higher than that of genes related to denitrification. Therefore, Propioniciclava was presumed to be a potential PAO without denitrifying phosphorus uptake function. In addition to Propioniciclava, Tessaracoccus and Thiothrix were also enriched in both systems. Overall, this study proposes a novel potential PAO and broadens the understanding of EBPR microbial communities.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Biological phosphorus and nitrogen removal with biological aerated filter using denitrifying phosphorus accumulating organism
    Lee, J
    Kim, J
    Lee, C
    Yun, Z
    Choi, E
    WATER SCIENCE AND TECHNOLOGY, 2005, 52 (10-11) : 569 - 578
  • [2] DENITRIFYING PHOSPHORUS ACCUMULATING ORGANISMS ENRICHMENT AND THEIR CHARACTERISTICS IN A DENITRIFYING ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL SYSTEM
    Zou, Haiming
    Wang, Yan
    ENVIRONMENT PROTECTION ENGINEERING, 2017, 43 (03): : 225 - 237
  • [3] Candidatus Halomonas phosphatis', a novel polyphosphate-accumulating organism in full-scale enhanced biological phosphorus removal plants
    Hien Thi Thu Nguyen
    Nielsen, Jeppe Lund
    Nielsen, Per Halkjaer
    ENVIRONMENTAL MICROBIOLOGY, 2012, 14 (10) : 2826 - 2837
  • [4] BIOLOGY OF POLYPHOSPHATE-ACCUMULATING BACTERIA INVOLVED IN ENHANCED BIOLOGICAL PHOSPHORUS REMOVAL
    KORTSTEE, GJJ
    APPELDOORN, KJ
    BONTING, CFC
    VANNIEL, EWJ
    VANVEEN, HW
    FEMS MICROBIOLOGY REVIEWS, 1994, 15 (2-3) : 137 - 153
  • [5] Candidatus Thiothrix phosphatis SCUT-1: A novel polyphosphate-accumulating organism abundant in the enhanced biological phosphorus removal system
    Chen, Liping
    Deng, Xuhan
    Xie, Xiaojing
    Wang, Kaiying
    Chen, Hang
    Cen, Sheqi
    Huang, Fu
    Wang, Cenchao
    Li, Yaqian
    Wei, Chaohai
    Qiu, Guanglei
    Water Research, 2024, 267
  • [6] Ecophysiology of polyphosphate-accumulating organisms and glycogen-accumulating organisms in a continuously aerated enhanced biological phosphorus removal process
    Schroeder, S.
    Ahn, J.
    Seviour, R. J.
    JOURNAL OF APPLIED MICROBIOLOGY, 2008, 105 (05) : 1412 - 1420
  • [7] The influence of carrier material on the dominance of polyphosphate-accumulating organism metabolism in the biofilm-based biological phosphorus removal process
    Massoompour, Ali Reza
    Raie, Mohammad
    Borghei, S. Mehdi
    Appels, Lise
    Dewil, Raf
    CHEMICAL ENGINEERING JOURNAL, 2022, 450
  • [8] Anaerobic metabolism of propionate by polyphosphate-accumulating organisms in enhanced biological phosphorus removal systems
    Oehmen, A
    Zeng, RJ
    Yuan, ZG
    Keller, J
    BIOTECHNOLOGY AND BIOENGINEERING, 2005, 91 (01) : 43 - 53
  • [9] Characterization of polyphosphate-accumulating bacteria community structure in enhanced biological phosphorus removal reactor
    Ma, Bin
    Peng, Yongzhen
    Wang, Shuying
    Ge, Shijian
    Yang, Yingying
    Zhu, Guibing
    Huagong Xuebao/CIESC Journal, 2010, 61 (05): : 1282 - 1285
  • [10] Altered Carbon Flow by Polyphosphate-Accumulating Organisms During Enhanced Biological Phosphorus Removal
    Ahn, Chang Hoon
    Park, Jae Kwang
    Whang, Liang-Ming
    WATER ENVIRONMENT RESEARCH, 2009, 81 (02) : 184 - 191