Prediction of lung cancer risk in ground-glass nodules using deep learning from CT images

被引:0
|
作者
Vachani, A. [1 ]
Zeb, S. [1 ]
Steltz, J. [1 ]
Hickes, W. [2 ]
Clarke, M. [3 ]
Kamara, A. [4 ]
Spechko, K. [4 ]
Padley, G. [4 ]
Bartlett, E. [4 ]
Freitag, L. [5 ]
Scarsbrook, A. [3 ]
Padley, S. [4 ]
Gleeson, F. [6 ]
机构
[1] Univ Penn, Med, Philadelphia, PA USA
[2] Oxford Univ Hosp NHS Fdn Trust, Radiol, Churchill Hosp, Oxford, England
[3] Leeds Teaching Hosp NHS Trust, Radiol, Leeds, W Yorkshire, England
[4] Royal Brompton Hosp, Radiol, London, England
[5] Optellum Ltd, Clin Res, Oxford, England
[6] Univ Oxford, Oncol, Oxford, England
关键词
D O I
10.1016/j.annonc.2023.09.744
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
1266P
引用
收藏
页码:S734 / S734
页数:1
相关论文
共 50 条
  • [1] Baseline whole-lung CT features deriving from deep learning and radiomics: prediction of benign and malignant pulmonary ground-glass nodules
    Huang, Wenjun
    Deng, Heng
    Li, Zhaobin
    Xiong, Zhanda
    Zhou, Taohu
    Ge, Yanming
    Zhang, Jing
    Jing, Wenbin
    Geng, Yayuan
    Wang, Xiang
    Tu, Wenting
    Dong, Peng
    Liu, Shiyuan
    Fan, Li
    [J]. FRONTIERS IN ONCOLOGY, 2023, 13
  • [2] A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images
    Jing Gong
    Jiyu Liu
    Wen Hao
    Shengdong Nie
    Bin Zheng
    Shengping Wang
    Weijun Peng
    [J]. European Radiology, 2020, 30 : 1847 - 1855
  • [3] A deep residual learning network for predicting lung adenocarcinoma manifesting as ground-glass nodule on CT images
    Gong, Jing
    Liu, Jiyu
    Hao, Wen
    Nie, Shengdong
    Zheng, Bin
    Wang, Shengping
    Peng, Weijun
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (04) : 1847 - 1855
  • [4] Estimation of Ground-Glass Opacity Measurement in CT Lung Images
    Zheng, Yuanjie
    Kambhamettu, Chandra
    Bauer, Thomas
    Steiner, Karl
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2008, PT II, PROCEEDINGS, 2008, 5242 : 238 - 245
  • [5] Lung-PNet: An Automated Deep Learning Model for the Diagnosis of Invasive Adenocarcinoma in Pure Ground-Glass Nodules on Chest CT
    Qi, Kang
    Wang, Kexin
    Wang, Xiaoying
    Zhang, Yu-Dong
    Lin, Gang
    Zhang, Xining
    Liu, Haibo
    Huang, Weiming
    Wu, Jingyun
    Zhao, Kai
    Liu, Jing
    Li, Jian
    Zhang, Xiaodong
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2024, 222 (01)
  • [6] Deep learning analysis to predict EGFR mutation status in lung adenocarcinoma manifesting as pure ground-glass opacity nodules on CT
    Yoon, Hyun Jung
    Choi, Jieun
    Kim, Eunjin
    Um, Sang-Won
    Kang, Noeul
    Kim, Wook
    Kim, Geena
    Park, Hyunjin
    Lee, Ho Yun
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12
  • [7] How to Define and Display Solid Components within Ground-Glass Nodules and Differentiate Pure Ground-Glass Nodules from Mixed Ground-Glass Nodules?
    Fan, Li
    Li, Qiong
    Xiao, Yi
    Wang, Yun
    Liu, Shi-Yuan
    [J]. RADIOLOGY, 2016, 281 (01) : 325 - 326
  • [8] Comparison and Fusion of Deep Learning and Radiomics Features of Ground-Glass Nodules to Predict the Invasiveness Risk of Stage-I Lung Adenocarcinomas in CT Scan
    Xia, Xianwu
    Gong, Jing
    Hao, Wen
    Yang, Ting
    Lin, Yeqing
    Wang, Shengping
    Peng, Weijun
    [J]. FRONTIERS IN ONCOLOGY, 2020, 10
  • [9] Ground-Glass Opacity Lung Nodules in the Era of Lung Cancer CT Screening: Radiology, Pathology, and Clinical Management
    Pedersen, Jesper Holst
    Saghir, Zaigham
    Wille, Mathilde Marie Winkler
    Thomsen, Laura Hohwu
    Skov, Birgit Guldhammer
    Ashraf, Haseem
    [J]. ONCOLOGY-NEW YORK, 2016, 30 (03): : 266 - 274
  • [10] Interpretable CT radiomics model for invasiveness prediction in patients with ground-glass nodules
    Hong, M. P.
    Zhang, R.
    Fan, S. J.
    Liang, Y. T.
    Cai, H. J.
    Xu, M. S.
    Zhou, B.
    Li, L. S.
    [J]. CLINICAL RADIOLOGY, 2024, 79 (01) : e8 - e16