A hybrid artificial intelligence solution approach to aftercare for cancer patients

被引:0
|
作者
Scherrer, Alexander [1 ]
Zimmermann, Tobias [1 ]
Riedel, Sinan [1 ]
Venios, Stefanos [2 ]
Koussouris, Sotiris [2 ]
Plakia, Maria [3 ]
Diamantopoulos, Sotiris [3 ]
Athanassopoulos, Sotiris [4 ]
Laras, Paris [4 ]
Mousa, Fihmi [5 ]
Zifrid, Robert [5 ]
Tillil, Hartmut [5 ]
Musisi, Isa Wasswa [5 ]
Kosmidis, Thanos [6 ]
Reis, Joaquim C. C. [7 ]
Moehler, Markus [8 ]
Oestreicher, Gabrielle [8 ]
Kalamaras, Ilias [9 ]
Pantelidou, Konstantina [9 ]
Votis, Konstantinos [9 ]
Vassiliou, Charalampos [10 ]
机构
[1] Fraunhofer Inst Ind Math ITWM, Fraunhofer Pl 1, D-67663 Kaiserslautern, Germany
[2] Suite5 Data Intelligence Solut Ltd, 1 Archiepiskopou Makariou III Mitsi Bu, CY-1065 Nicosia, Cyprus
[3] EXUS Software Ltd, Old Broad St 25 Tower 42, London EC2N 1PB, England
[4] Maggioli Spa, Via Carpino 8, I-47822 Santarcangelo, Italy
[5] MCS Data Labs GmbH, Bismarck Str 10-12, D-10625 Berlin, Germany
[6] Care Across Ltd, 1 Kings Ave, London N21 3NA, England
[7] Univ Lisbon, Fac Ciencias, Inst Biofis & Engn Biomed, P-1749016 Lisbon, Portugal
[8] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Langenbeckstr 1, D-55131 Mainz, Germany
[9] Ctr Res & Technol Hellas, Charilaou Thermi Rd 6 Km, Thermi 57001, Greece
[10] INNOSYST M IKE, Aooy 10, Athens 11523, Greece
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 29期
基金
欧盟地平线“2020”;
关键词
Oncological aftercare; Artificial intelligence; Data analysis; Decision support;
D O I
10.1007/s00521-023-08765-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This publication presents a solution approach to oncological aftercare for cancer patients by means of artificial intelligence (AI) methods. This approach shall support patients in overcoming the after-effects of therapy effectively with suitable supportive actions and health-care professionals in goal-oriented planning of these actions. Different AI methods are used for analyzing patients' needs for supportive actions depending on the available health data and for a monitoring of these actions. Decision support methods are used for effective planning of actions based on the AI results of analysis. The solution approach is realized in the form of a web application for health-care professionals, which allows for data analysis and planning of actions, and a mobile application for patients, which facilitates documentation and monitoring of supportive actions. In combination, they facilitate a closed-loop workflow for the effective cooperation of health-care professionals and cancer patients. The solution approach is illustrated for an exemplary case scenario of colorectal cancer.
引用
收藏
页码:21381 / 21397
页数:17
相关论文
共 50 条
  • [1] A hybrid artificial intelligence solution approach to aftercare for cancer patients
    Alexander Scherrer
    Tobias Zimmermann
    Sinan Riedel
    Stefanos Venios
    Sotiris Koussouris
    Maria Plakia
    Sotiris Diamantopoulos
    Sotiris Athanassopoulos
    Paris Laras
    Fihmi Mousa
    Robert Zifrid
    Hartmut Tillil
    Isa Wasswa Musisi
    Thanos Kosmidis
    Joaquim C. Reis
    Markus Moehler
    Gabrielle Oestreicher
    Ilias Kalamaras
    Konstantina Pantelidou
    Konstantinos Votis
    Charalampos Vassiliou
    [J]. Neural Computing and Applications, 2023, 35 : 21381 - 21397
  • [2] A hybrid model approach to artificial intelligence
    Deeb, K
    Jimenez, R
    [J]. INTELLIGENT INFORMATION PROCESSING AND WEB MINING, 2003, : 511 - 520
  • [3] An Artificial Intelligence Approach to Nutritional Meal Planning for Cancer Patients
    Fox, Richard
    Bui, Yuliya
    [J]. ARTIFICIAL INTELLIGENCE PERSPECTIVES AND APPLICATIONS (CSOC2015), 2015, 347 : 215 - 224
  • [4] A hybrid artificial intelligence approach with application to games
    Cant, R
    Churchill, J
    Al-Dabass, D
    [J]. PROCEEDING OF THE 2002 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-3, 2002, : 1575 - 1580
  • [5] Hybrid artificial intelligence approach to urban planning
    Feng, S
    Xu, LD
    [J]. EXPERT SYSTEMS, 1999, 16 (04) : 248 - 261
  • [6] Hybrid artificial intelligence approach to continuous bridge monitoring
    Martinelli, David
    Shoukry, Samir N.
    Varadarajan, S.T.
    [J]. Transportation Research Record, 1995, (1497): : 77 - 82
  • [7] Challenges associated with Hybrid Energy Systems: An artificial intelligence solution
    Maghami, Mohammad Reza
    Mutambara, Arthur Guseni Oliver
    [J]. ENERGY REPORTS, 2023, 9 : 924 - 940
  • [8] A Hybrid Artificial Intelligence Model for Skin Cancer Diagnosis
    Lakshmi, V. Vidya
    Jasmine, J. S. Leena
    [J]. COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2021, 37 (02): : 233 - 245
  • [9] Diagnosis of Lung Cancer with Hybrid Artificial Intelligence Method
    Kalkan, Gazi Muhammed
    Donmez, Bura
    Tok, Yusuf Cafer
    Gurel, Sumeyye
    Akdaglis, Eren
    Capkan, Hilal
    Kaya, Muhammed Zahid
    Kandaz, Derya
    Ucar, Muhammed Kursad
    Senol, Sevde Nur
    [J]. 2022 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO'22), 2022,
  • [10] An artificial intelligence approach for predicting cardiotoxicity in breast cancer patients receiving anthracycline
    Wei-Ting Chang
    Chung-Feng Liu
    Yin-Hsun Feng
    Chia-Te Liao
    Jhi-Joung Wang
    Zhih-Cherng Chen
    Hsiang-Chun Lee
    Jhih-Yuan Shih
    [J]. Archives of Toxicology, 2022, 96 : 2731 - 2737