Genome-enabled prediction through quantile random forest for complex traits

被引:0
|
作者
Valadares, Cristiane Botelho [1 ]
Nascimento, Moyses [1 ]
Celeri, Mauricio de Oliveira [1 ]
Nascimento, Ana Carolina Campana [1 ]
Barroso, Lais Mayara Azevedo [2 ]
Sant'Anna, Isabela de Castro [3 ]
Azevedo, Camila Ferreira [1 ]
机构
[1] Univ Fed Vicosa UFV, Dept Estat, BR-36570900 Vicosa, MG, Brazil
[2] Univ Fed Rondonia UNIR, Dept Matemat, Parana, RO, Brazil
[3] Inst Agron Campinas IAC, Ctr Seringueira & Sistemas Agroflorestais, Votuporanga, SP, Brazil
来源
CIENCIA RURAL | 2023年 / 53卷 / 10期
关键词
genomic selection; accuracy; epistasis; dominance; prediction;
D O I
10.1590/0103-8478cr202203271
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Quantile Random Forest (QRF) is a non-parametric methodology that combines the advantages of Random Forest (RF) and Quantile Regression (QR). Specifically, this approach can explore non-linear functions, determining the probability distribution of a response variable and extracting information from different quantiles instead of just predicting the mean. This evaluated the performance of the QRF in the genomic prediction for complex traits (epistasis and dominance). In addition, compare the accuracies obtained with those derived from the G-BLUP. The simulation created an F2 population with 1,000 individuals and genotyped for 4,010 SNP markers. Besides, twelve traits were simulated from a model considering additive and non-additive effects, QTL (Quantitative trait loci) numbers ranging from eight to 120, and heritability of 0.3, 0.5, or 0.8. For training and validation, the 5-fold cross-validation approach was used. For each fold, the accuracies of all the proposed models were calculated: QRF in five different quantiles and three G-BLUP models (additive effect, additive and epistatic effects, additive and dominant effects). Finally, the predictive performance of these methodologies was compared. In all scenarios, the QRF accuracies were equal to or greater than the methodologies evaluated and proved to be an alternative tool to predict genetic values in complex traits.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantile Regression Applied to Genome-Enabled Prediction of Traits Related to Flowering Time in the Common Bean
    Nascimento, Ana Carolina
    Nascimento, Moyses
    Azevedo, Camila
    Silva, Fabyano
    Barili, Leiri
    Vale, Naine
    Carneiro, Jose Eustaquio
    Cruz, Cosme
    Carneiro, Pedro Crescencio
    Serao, Nick
    [J]. AGRONOMY-BASEL, 2019, 9 (12):
  • [2] Genome-Enabled Prediction Models for Yield Related Traits in Chickpea
    Roorkiwal, Manish
    Rathore, Abhishek
    Das, Roma R.
    Singh, Muneendra K.
    Jain, Ankit
    Srinivasan, Samineni
    Gaur, Pooran M.
    Chellapilla, Bharadwaj
    Tripathi, Shailesh
    Li, Yongle
    Hickey, John M.
    Lorenz, Aaron
    Sutton, Tim
    Crossa, Jose
    Jannink, Jean-Luc
    Varshney, Rajeev K.
    [J]. FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [3] A Multiple-Trait Bayesian Lasso for Genome-Enabled Analysis and Prediction of Complex Traits
    Gianola, Daniel
    Fernando, Rohan L.
    [J]. GENETICS, 2020, 214 (02) : 305 - 331
  • [4] Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data
    Felipe, Vivian P. S.
    Okut, Hayrettin
    Gianola, Daniel
    Silva, Martinho A.
    Rosa, Guilherme J. M.
    [J]. BMC GENETICS, 2014, 15
  • [5] Effect of genotype imputation on genome-enabled prediction of complex traits: an empirical study with mice data
    Vivian PS Felipe
    Hayrettin Okut
    Daniel Gianola
    Martinho A Silva
    Guilherme JM Rosa
    [J]. BMC Genetics, 15
  • [6] Genome-enabled prediction of quantitative traits in chickens using genomic annotation
    Gota Morota
    Rostam Abdollahi-Arpanahi
    Andreas Kranis
    Daniel Gianola
    [J]. BMC Genomics, 15
  • [7] Genome-enabled prediction of quantitative traits in chickens using genomic annotation
    Morota, Gota
    Abdollahi-Arpanahi, Rostam
    Kranis, Andreas
    Gianola, Daniel
    [J]. BMC GENOMICS, 2014, 15
  • [8] High accuracy of genome-enabled prediction of belowground and physiological traits in barley seedlings
    Puglisi, Damiano
    Visioni, Andrea
    Ozkan, Hakan
    Kara, Ibrahim
    Lo Piero, Angela Roberta
    Rachdad, Fatima Ezzahra
    Tondelli, Alessandro
    Vale, Giampiero
    Cattivelli, Luigi
    Fricano, Agostino
    [J]. G3-GENES GENOMES GENETICS, 2022, 12 (03):
  • [9] Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding
    Montesinos-Lopez, Osval A.
    Montesinos-Lopez, Abelardo
    Perez-Rodriguez, Paulino
    de los Campos, Gustavo
    Eskridge, Kent
    Crossa, Jose
    [J]. G3-GENES GENOMES GENETICS, 2015, 5 (02): : 291 - 300
  • [10] Genome-enabled prediction of genetic values of growth traits using artificial neural networks
    Peters, S. O.
    Sinecen, M.
    Thomas, M. G.
    Imumorin, I. G.
    Kizilkaya, K.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 : 151 - 152