On the diameter and zero forcing number of some graph classes in the Johnson, Grassmann and Hamming association scheme

被引:0
|
作者
Abiad, Aida [1 ,2 ,3 ]
Simoens, Robin [2 ]
Zeijlemaker, Sjanne [1 ]
机构
[1] Eindhoven Univ Technol, Dept Math & Comp Sci, Eindhoven, Netherlands
[2] Univ Ghent, Dept Math Anal Log & Discrete Math, Ghent, Belgium
[3] Vrije Univ Brussel, Dept Math & Data Sci, Elsene, Belgium
基金
荷兰研究理事会;
关键词
Zero forcing number; Diameter; Johnson scheme; Grassmann scheme; Hamming scheme; DOMINATING SEQUENCES; METRIC DIMENSION; COMPLEXITY;
D O I
10.1016/j.dam.2024.01.041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine the diameter of generalized Grassmann graphs and the zero forcing number of some generalized Johnson graphs, generalized Grassmann graphs and the Hamming graphs. Our work extends several previously known results. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:221 / 230
页数:10
相关论文
共 29 条
  • [1] Some bounds on the zero forcing number of a graph
    Gentner, Michael
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 203 - 213
  • [2] Embedding the ith graph of the Johnson scheme into the graph of the Hamming scheme
    Solano, Geoffrey A.
    Caro, Jaime D.L.
    WSEAS Transactions on Computers, 2007, 6 (07): : 979 - 984
  • [3] Some results on the total (zero) forcing number of a graph
    Li, Jianxi
    Tu, Dongxin
    Shiu, Wai Chee
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2025, 49 (03)
  • [4] On the zero forcing number of a graph involving some classical parameters
    Shuchao Li
    Wanting Sun
    Journal of Combinatorial Optimization, 2020, 39 : 365 - 384
  • [5] On the zero forcing number of a graph involving some classical parameters
    Li, Shuchao
    Sun, Wanting
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (02) : 365 - 384
  • [6] The radius, diameter and chromatic number of some zero divisor graph
    Omran, Ahmed A.
    Ghazi, Hayder F.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 3891 - 3896
  • [7] Cospectral mates for the union of some classes in the Johnson association scheme
    Cioaba, Sebastian M.
    Haemers, Willem H.
    Johnston, Travis
    McGinnis, Matt
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 539 : 219 - 228
  • [8] Proof of a conjecture on the zero forcing number of a graph
    Lu, Leihao
    Wu, Baoyindureng
    Tang, Zixing
    DISCRETE APPLIED MATHEMATICS, 2016, 213 : 233 - 237
  • [9] SPECTRAL BOUNDS FOR THE ZERO FORCING NUMBER OF A GRAPH
    Chen, Hongzhang
    Li, Jianxi
    Xu, Shou-Jun
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (03) : 971 - 982
  • [10] Zero forcing number of a graph in terms of the number of pendant vertices
    Wang, Xinlei
    Wong, Dein
    Zhang, Yuanshuai
    LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (07): : 1424 - 1433