The Network Slicing and Performance Analysis of 6G Networks using Machine Learning

被引:0
|
作者
Mahesh, H. B. [1 ,2 ]
Ahammed, G. F. Ali [3 ]
Usha, S. M. [4 ]
机构
[1] PES Univ, Dept Comp Sci & Engn, Bengaluru, India
[2] Visvesvaraya Technol Univ, Belagavi, India
[3] Visvesvaraya Technol Univ, PG Ctr, Dept Comp Sci Sr Engn, Mysuru, India
[4] JSS Acad Tech Educ, Dept Elect & Commun Engn, Bengaluru, India
关键词
6G Technologies; KD Tree; Slicing; Connection ratio; Latency; SERVICES;
D O I
10.24003/emitter.v11i2.772
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
6G technology is designed to provide users with faster and more reliable data transfer as compared to the current 5G technology. 6G is rapidly evolving and provides a large bandwidth, even in underserved areas. This technology is extremely anticipated and is currently booming for its ability to deliver massive network capacity, low latency, and a highly improved user experience. Its scope is immense, and it's designed to connect everyone and everything in the world. It includes new deployment models and services with extended user capacity. This study proposes a network slicing simulator that uses hardcoded base station coordinates to randomly distribute client locations to help analyse the performance of a particular base station architecture. When a client wants to locate the closest base station, it queries the simulator, which stores base station coordinates in a K-Dimensional tree. Throughout the simulation, the user follows a pattern that continues until the time limit is achieved. It gauges multiple statistics such as client connection ratio, client count per second, Client count per slice, latency, and the new location of the client. The K-D tree handover algorithm proposed here allows the user to connect to the nearest base stations after fulfilling the required criteria. This algorithm stations the user connects to.
引用
收藏
页码:174 / 191
页数:18
相关论文
共 50 条
  • [1] Optimizing network slicing in 6G networks through a hybrid deep learning strategy
    Dangi, Ramraj
    Lalwani, Praveen
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (14): : 20400 - 20420
  • [2] AI-Native Network Slicing for 6G Networks
    Wu, Wen
    Zhou, Conghao
    Li, Mushu
    Wu, Huaqing
    Zhou, Haibo
    Zhang, Ning
    Shen, Xuemin Sherman
    Zhuang, Weihua
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (01) : 96 - 103
  • [3] Analysis of Network Slicing for Management of 5G Networks Using Machine Learning Techniques
    Singh, Randeep
    Mehbodniya, Abolfazl
    Webber, Julian L.
    Dadheech, Pankaj
    Pavithra, G.
    Alzaidi, Mohammed S.
    Akwafo, Reynah
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [4] Analysis of Network Slicing for Management of 5G Networks Using Machine Learning Techniques
    Singh, Randeep
    Mehbodniya, Abolfazl
    Webber, Julian L.
    Dadheech, Pankaj
    Pavithra, G.
    Alzaidi, Mohammed S.
    Akwafo, Reynah
    Wireless Communications and Mobile Computing, 2022, 2022
  • [5] Anomaly Detection in 6G Networks Using Machine Learning Methods
    Saeed, Mamoon M.
    Saeed, Rashid A.
    Abdelhaq, Maha
    Alsaqour, Raed
    Hasan, Mohammad Kamrul
    Mokhtar, Rania A.
    ELECTRONICS, 2023, 12 (15)
  • [6] Network Slicing with Centralized and Distributed Reinforcement Learning for Combined Satellite/Ground Networks in a 6G Environment
    Rodrigues, Tiago Koketsu
    Kato, Nei
    IEEE WIRELESS COMMUNICATIONS, 2022, 29 (01) : 104 - 110
  • [7] Federated Deep Reinforcement Learning for Open RAN Slicing in 6G Networks
    Abouaomar, Amine
    Taik, Afaf
    Filali, Abderrahime
    Cherkaoui, Soumaya
    IEEE COMMUNICATIONS MAGAZINE, 2023, 61 (02) : 126 - 132
  • [8] USAGE OF NETWORK SIMULATORS IN MACHINE-LEARNING-ASSISTED 5G/6G NETWORKS
    Wilhelmi, Francesc
    Carrascosa, Marc
    Cano, Cristina
    Jonsson, Anders
    Ram, Vishnu
    Bellalta, Boris
    IEEE WIRELESS COMMUNICATIONS, 2021, 28 (01) : 160 - 166
  • [9] Overview of Distributed Machine Learning Techniques for 6G Networks
    Muscinelli, Eugenio
    Shinde, Swapnil Sadashiv
    Tarchi, Daniele
    ALGORITHMS, 2022, 15 (06)
  • [10] Analysis and Performance Evaluation of Transfer Learning Algorithms for 6G Wireless Networks
    Consolaro, Niccolo Girelli
    Shinde, Swapnil Sadashiv
    Naseh, David
    Tarchi, Daniele
    ELECTRONICS, 2023, 12 (15)