Asymmetric Contour Uncertainty Estimation for Medical Image Segmentation

被引:2
|
作者
Judge, Thierry [1 ]
Bernard, Olivier [3 ]
Kim, Woo-Jin Cho [2 ]
Gomez, Alberto [2 ]
Chartsias, Agisilaos [2 ]
Jodoin, Pierre-Marc [1 ]
机构
[1] Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ, Canada
[2] Ultr Ltd, Oxford OX4 2SU, England
[3] Univ Lyon 1, Univ Lyon, CNRS, CREATIS,Inserm U1294,UMR5220, Villeurbanne, France
关键词
Uncertainty estimation; Image segmentation;
D O I
10.1007/978-3-031-43898-1_21
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Aleatoric uncertainty estimation is a critical step in medical image segmentation. Most techniques for estimating aleatoric uncertainty for segmentation purposes assume a Gaussian distribution over the neural network's logit value modeling the uncertainty in the predicted class. However, in many cases, such as image segmentation, there is no uncertainty about the presence of a specific structure, but rather about the precise outline of that structure. For this reason, we explicitly model the location uncertainty by redefining the conventional per-pixel segmentation task as a contour regression problem. This allows for modeling the uncertainty of contour points using a more appropriate multivariate distribution. Additionally, as contour uncertainty may be asymmetric, we use a multivariate skewed Gaussian distribution. In addition to being directly interpretable, our uncertainty estimation method outperforms previous methods on three datasets using two different image modalities. Code is available at: https://github.com/ThierryJudge/contouring-uncertainty.
引用
收藏
页码:210 / 220
页数:11
相关论文
共 50 条
  • [1] CRISP - Reliable Uncertainty Estimation for Medical Image Segmentation
    Judge, Thierry
    Bernard, Olivier
    Porumb, Mihaela
    Chartsias, Agisilaos
    Beqiri, Arian
    Jodoin, Pierre-Marc
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT VIII, 2022, 13438 : 492 - 502
  • [2] MODEL-DEPENDENT UNCERTAINTY ESTIMATION OF MEDICAL IMAGE SEGMENTATION
    Hershkovitch, Tsachi
    Riklin-Raviv, Tammy
    [J]. 2018 IEEE 15TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2018), 2018, : 1373 - 1376
  • [3] Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
    Mehrtash, Alireza
    Wells, William M., III
    Tempany, Clare M.
    Abolmaesumi, Purang
    Kapur, Tina
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2020, 39 (12) : 3868 - 3878
  • [4] A novel active contour for medical image segmentation
    Saadatmand-Tarjzan, Mahdi
    Ghassemian, Hassan
    [J]. IEICE ELECTRONICS EXPRESS, 2009, 6 (23): : 1683 - 1689
  • [5] Evaluation of Active Contour on Medical Inhomogeneous Image Segmentation
    Chiu, Yun-Jen
    Van-Truong Pham
    Thi-Thao Tran
    Shyu, Kuo-Kai
    [J]. PROCEEDINGS 2010 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INFORMATION TECHNOLOGY, (ICCSIT 2010), VOL 1, 2010, : 311 - 314
  • [6] A Novel Active Contour Model for Medical Image Segmentation
    付增良
    叶铭
    苏永琳
    林艳萍
    王成焘
    [J]. Journal of Shanghai Jiaotong University(Science), 2010, 15 (05) : 549 - 555
  • [7] Medical image segmentation by geodesic active contour methods
    Ye, Guiyun
    Liu, Changzheng
    [J]. DCABES 2007 PROCEEDINGS, VOLS I AND II, 2007, : 1158 - 1161
  • [8] Application of active contour models in medical image segmentation
    Derraz, F
    Beladgham, M
    Khelif, M
    [J]. ITCC 2004: INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY: CODING AND COMPUTING, VOL 2, PROCEEDINGS, 2004, : 675 - 681
  • [9] A novel active contour model for medical image segmentation
    Fu Z.-L.
    Ye M.
    Su Y.-L.
    Lin Y.-P.
    Wang C.-T.
    [J]. Journal of Shanghai Jiaotong University (Science), 2010, 15 (5) : 549 - 555
  • [10] Segmentation of Medical Image Sequence by Parallel Active Contour
    Feker, Abdelkader
    Benamrane, Nacera
    [J]. SOFTWARE TOOLS AND ALGORITHMS FOR BIOLOGICAL SYSTEMS, 2011, 696 : 515 - 522