Research on Arc Erosion Resistance of High-Entropy Alloy-Modified Aluminum Alloy Armature Based on Molecular Dynamics Simulation

被引:3
|
作者
Teng, Yuanxin [1 ]
Zhang, Li [1 ]
Wang, Guan [1 ]
Wu, Meiying [1 ]
Fan, Chenlu [1 ]
Liu, Shushuai [1 ]
机构
[1] Shandong Univ, Sch Elect Engn, Jinan 250061, Peoples R China
基金
中国国家自然科学基金;
关键词
arc impact; high-entropy alloys; molecular dynamics modeling; armature surface modification; resistance to arc ablation; MICROSTRUCTURE; TECHNOLOGY; SCIENCE; WAVE;
D O I
10.3390/coatings14020187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In an electromagnetic launch system, the surface of the aluminum alloy armature is subjected to high-temperature ablation, leading to the generation of significant metal vapor and the initiation of high-energy arcs. This damages the armature structure and can result in a launch failure. Enhancing the ablation resistance of the armature surface is crucial for improving launch efficiency. In this study, a model for the surface modification of an aluminum alloy armature was constructed. The impact of the CoCrNiFeAlx surface-modified material on the resistance to ablation and structural changes of the armature during arc ablation was elucidated through molecular dynamics simulation. Results show that adding a CoCrNiFeAlx fused cladding layer can effectively enhance the material's high-temperature resistance. The CoCrNiFeAlx fused cladding significantly reduces the depth of arc intrusion. The CoCrNiFeAlx aluminum alloy model exhibits a narrower strain range on the bombarded surface and a more flattened bombardment crater shape. CoCrNiFeAlx fused cladding helps to reduce damage from substrate bombardment. Comparing simulation results indicates that CoCrNiFeAl0.25 performs best in high-temperature resistance and impact strength, making it the most preferred choice. This study elucidates the law of high-entropy alloy arc ablation resistance and its micromechanism in armature surface modification. It provides a theoretical basis and technical support for preparing high-entropy alloy-aluminum alloy-modified armatures with superior ablation resistance performance.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Cyclic Plasticity of CoCrFeMnNi High-Entropy Alloy (HEA): A Molecular Dynamics Simulation
    Du, Xin
    Lu, Xiaochong
    Shuang, Siyao
    Wang, Zhangwei
    Xiong, Qi-lin
    Kang, Guozheng
    Zhang, Xu
    INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2021, 13 (01)
  • [2] Molecular dynamics study on friction of high-entropy alloy FeNiCrCoCu
    Wu, Yonglong
    Tan, Jing
    Li, Xinmin
    Qiu, Zhengjie
    Zhang, Runzhi
    MATERIALS TODAY COMMUNICATIONS, 2023, 37
  • [3] Research Progress of the Effect of Alloy Composition on the Wear Resistance of High-entropy Alloy Coatings
    Jiang, Fengyang
    Ai, Gengen
    Si, Fang
    Liu, Jiangnan
    Wei, Na
    Wang, Junbo
    CHINA SURFACE ENGINEERING, 2024, 37 (04) : 18 - 43
  • [4] Microplastic deformation of cocrfemnni high-entropy alloy under laser shock: a molecular dynamics simulation
    Du X.
    Xiong Q.
    Zhou L.
    Kan Q.
    Jiang S.
    Zhang X.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2021, 53 (12): : 3331 - 3340
  • [5] Molecular dynamics simulations of tensile properties for FeNiCrCoCu high-entropy alloy
    Wang, Qian
    Guo, Junhong
    Chen, Weiqiu
    Tian, Yuan
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [6] Effect of Aluminum Content on Microstructure and Wear Resistance of CuCrFeMnTiAlx High-Entropy Alloy
    Nong Zhisheng
    Li Diansheng
    Zhu Jingchuan
    Yu Hailing
    Lai Zhonghong
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 : 550 - 554
  • [7] Research Progress of High-Entropy Alloy Coatings
    Cui Hongzhi
    Jiang Di
    ACTA METALLURGICA SINICA, 2022, 58 (01) : 17 - 27
  • [8] Research Progress of High-entropy Alloy Coatings
    Li X.
    Wang Y.-Q.
    Zhang J.-Y.
    Wu K.
    Liu G.
    Sun J.
    Surface Technology, 2023, 52 (01): : 1 - 20
  • [9] Research on the nucleation and growth of high-entropy alloy
    Wang, M.
    Guo, S.
    Lin, X.
    Huang, W. D.
    MATERIALS LETTERS, 2021, 285
  • [10] Remarkable cavitation erosion-corrosion resistance of CoCrFeNiTiMo high-entropy alloy coatings
    Xu, Jiang
    Peng, Shuang
    Li, Zhengyang
    Jiang, Shuyun
    Xie, Zong-Han
    Munroe, Paul
    Lu, Hong
    CORROSION SCIENCE, 2021, 190