Sustainable aviation fuel production using in-situ hydrogen supply via aqueous phase reforming: A techno-economic and life-cycle greenhouse gas emissions assessment

被引:11
|
作者
Pipitone, Giuseppe [1 ]
Zoppi, Giulia [1 ]
Pirone, Raffaele [1 ]
Bensaid, Samir [1 ]
机构
[1] Politecn Torino, Dept Appl Sci & Technol, Corso Duca Abruzzi 24, I-10129 Turin, Italy
关键词
Aqueous phase reforming; GHG reduction; Hydrogenated vegetable oil; Sustainable aviation fuel; Techno-economic assessment; RENEWABLE JET FUEL; VEGETABLE-OILS; FATTY-ACIDS; SOYBEAN OIL; DIESEL; HYDRODEOXYGENATION; DECARBOXYLATION; HYDROCARBONS; HYDROTREATMENT; DEOXYGENATION;
D O I
10.1016/j.jclepro.2023.138141
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sustainable aviation fuel (SAF) production is one of the strategies to guarantee an environmental-friendly development of the aviation sector. This work evaluates the technical, economic and environmental feasibility of obtaining SAFs by hydrogenation of vegetable oils thanks to in-situ hydrogen production via aqueous phase reforming (APR) of glycerol by-product. The novel implementation of APR would avoid the environmental burden of conventional fossil-derived hydrogen production, as well as intermittency and storage issues related to the use of RES-based (renewable energy sources) electrolysers. The conceptual design of a conventional and advanced (APR-aided) biorefinery was performed, considering a standard plant capacity equal to 180 ktonne/y of palm oil. For the advanced scenario, the feed underwent hydrolysis into glycerol and fatty acids; hence, the former was subjected to APR to provide hydrogen, which was further used in the hydrotreatment reactor where the fatty acids were deoxygenated. The techno-economic results showed that APR implementation led to a slight increase of the fixed capital investment by 6.6% compared to the conventional one, while direct manufacturing costs decreased by 22%. In order to get a 10% internal rate of return, the minimum fuel selling price was found equal to 1.84 $/kg, which is 17% lower than the one derived from conventional configurations (2.20 $/kg). The life-cycle GHG emission assessment showed that the carbon footprint of the advanced scenario was equal to ca. 12 g CO2/MJSAF, i.e., 54% lower than the conventional one (considering an energy-based allocation). The sensitivity analysis pointed out that the cost of the feedstock, SAF yield and the chosen plant size are keys pa-rameters for the marketability of this biorefinery, while the energy price has a negligible impact; moreover, the source of hydrogen has significant consequences on the environmental footprint of the plant. Finally, possible uncertainties for both scenarios were undertaken via Monte Carlo simulations.
引用
收藏
页数:14
相关论文
共 42 条
  • [1] Techno-economic and life-cycle analyses of sustainable aviation fuel production via integrated catalytic deoxygenation and hydrothermal gasification
    Umenweke, Great C.
    Pace, Robert B.
    Santillan-Jimenez, Eduardo
    Okolie, Jude A.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2023, 452
  • [2] Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China
    Zhang, Jinrui
    Meerman, Hans
    Benders, Rene
    Faaij, Andre
    [J]. ENERGY, 2021, 224
  • [3] Time Value of Greenhouse Gas Emissions in Life Cycle Assessment and Techno-Economic Analysis
    Sproul, Evan
    Barlow, Jay
    Quinn, Jason C.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2019, 53 (10) : 6073 - 6080
  • [4] Integrated assessment of green hydrogen production in California: Life cycle Greenhouse gas Emissions, Techno-Economic Feasibility, and resource variability
    Al-Ghussain, Loiy
    Alrbai, Mohammad
    Al-Dahidi, Sameer
    Lu, Zifeng
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2024, 311
  • [5] An upcycling bioprocess for sustainable aviation fuel production from food waste-derived greenhouse gases: Life cycle assessment and techno-economic analysis
    Zhang, Chenyue
    Fu, Rongzhan
    Kang, Lixia
    Ma, Yingqun
    Fan, Daidi
    Fei, Qiang
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 486
  • [6] An upcycling bioprocess for sustainable aviation fuel production from food waste-derived greenhouse gases: Life cycle assessment and techno-economic analysis
    Zhang, Chenyue
    Fu, Rongzhan
    Kang, Lixia
    Ma, Yingqun
    Fan, Daidi
    Fei, Qiang
    [J]. Chemical Engineering Journal, 2024, 486
  • [7] Sustainable aviation fuel (SAF) production through power-to-liquid (PtL): A combined techno-economic and life cycle assessment
    Rojas-Michaga, Maria Fernanda
    Michailos, Stavros
    Cardozo, Evelyn
    Akram, Muhammad
    Hughes, Kevin J.
    Ingham, Derek
    Pourkashanian, Mohamed
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2023, 292
  • [8] Hydrogen production from fishing net waste for sustainable clean fuel: Techno-economic analysis and life cycle assessment
    Lee, Hyejeong
    Im, Junhyeok
    Cho, Hyungtae
    Jung, Sungyup
    Choi, Hyeseung
    Choi, Dongho
    Kim, Junghwan
    Lee, Jaewon
    Kwon, Eilhann E.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2024, 481
  • [9] Techno-economic and life-cycle assessment of fuel production from mixotrophic Galdieria sulphuraria microalgae on hydrolysate
    Somers, Michael D.
    Chen, Peter
    Clippinger, Jennifer
    Cruce, Jesse R.
    Davis, Ryan
    Lammers, Peter J.
    Quinn, Jason C.
    [J]. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2021, 59
  • [10] Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming
    Li, Guoxuan
    Wang, Shuai
    Zhao, Jiangang
    Qi, Huaqing
    Ma, Zhaoyuan
    Cui, Peizhe
    Zhu, Zhaoyou
    Gao, Jun
    Wang, Yinglong
    [J]. ENERGY, 2020, 199