Study on durability of transverse shear properties for novel carbon/glass hybrid fiber-reinforced polymer bars in simulated concrete environments

被引:6
|
作者
Zhang, Yu [1 ]
Gao, Danying [1 ,3 ]
Yang, Lin [2 ]
Fang, Dong [1 ]
Pang, Yuyang [1 ]
Gu, Zhiqiang [2 ]
机构
[1] Zhengzhou Univ, Sch Civil Engn, Zhengzhou, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Water Conservancy Engn, Zhengzhou, Henan, Peoples R China
[3] Zhengzhou Univ, Sch Civil Engn, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
degradation mechanism; durability; hybrid fiber-reinforced polymer bar; strength prediction model; transverse shear property; LONG-TERM DURABILITY; FRP RODS; BASALT; GLASS; PERFORMANCE; BEHAVIOR; POLYESTER; SEAWATER;
D O I
10.1002/pc.27422
中图分类号
TB33 [复合材料];
学科分类号
摘要
Durability on the transverse shear properties of hybrid fiber-reinforced polymer (HFRP) bar may control the cross-sectional load-bearing capacity and failure mode of the HFRP bar reinforced concrete members due to its strength degradation with time. Herein, the degradation of novel carbon/glass (C/G)-HFRP bars were accelerated in simulated concrete environments at 60 degrees C to investigate the effects of fiber volume fraction and distribution pattern, matrix resin volume fraction, exposure environment, and period on their transverse shear properties. The results displayed that the transverse shear strength of the samples reduced by 15%, 20%, and 8% after exposure to the simulated ordinary concrete, seawater sea-sand concrete environments, and tap water for 6 months, respectively. The inward diffusion of water molecules and free hydroxyl ions caused the hydrolysis of matrix resin, etching of glass fiber and debonding of fiber/matrix interface, which were the incentives of the degradation of C/G-HFRP bars. The increase of matrix resin volume fraction and the application of a waterproof coating were recommended to alleviate the degradation of fibrous composites in concrete environments. Finally, two prediction models were proposed to determine the transverse shear strength of HFRP bar before and after exposure to different harsh environments, respectively. The comparisons indicated that the predicted values were coincided with the experimental results.
引用
收藏
页码:4594 / 4611
页数:18
相关论文
共 50 条
  • [1] Durability of glass fiber-reinforced polymer bars in water and simulated concrete pore solution
    Yu, Yixun
    Liu, Shuai
    Pan, Yunfeng
    Miu, Xinbo
    Liu, Jintao
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 299 (299)
  • [2] Durability of glass fiber-reinforced polymer reinforcing bars in concrete environment
    Benmokrane, B
    Wang, P
    Ton-That, TM
    Rahman, H
    Robert, JF
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2002, 6 (03) : 143 - 153
  • [3] Shear Behavior of Geopolymer Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars
    Maranan, G. B.
    Manalo, A. C.
    Benmokrane, B.
    Karunasena, W.
    Mendis, P.
    ACI STRUCTURAL JOURNAL, 2017, 114 (02) : 337 - 348
  • [4] Shear Capacity of Lightweight Concrete Beam Reinforced with Glass Fiber-Reinforced Polymer Bars
    Akbarzadeh Bengar, Habib
    Ahmadi Zarrinkolaei, Fatemeh
    Bozorgnasab, Mohsen
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2021, 45 (03) : 1565 - 1574
  • [5] Shear Capacity of Lightweight Concrete Beam Reinforced with Glass Fiber-Reinforced Polymer Bars
    Habib Akbarzadeh Bengar
    Fatemeh Ahmadi Zarrinkolaei
    Mohsen Bozorgnasab
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2021, 45 : 1565 - 1574
  • [6] Generational Advancements in the Transverse Shear Strength Retention of Glass Fiber-Reinforced Polymer Bars in Alkaline and Acidic Environments
    Al-Zahrani, Mesfer M.
    POLYMERS, 2024, 16 (19)
  • [7] Modeling of Hysteretic Response for Concrete Shear Walls Reinforced with Glass Fiber-Reinforced Polymer Bars
    Hassanein, Ahmed
    Mohamed, Nayera
    Farghaly, Ahmed Sabry
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2019, 116 (06) : 17 - 29
  • [8] Shear Strength of Circular Concrete Beams Reinforced with Glass Fiber-Reinforced Polymer Bars and Spirals
    Ali, Ahmed H.
    Mohamed, Hamdy M.
    Benmokrane, Brahim
    ACI STRUCTURAL JOURNAL, 2017, 114 (01) : 39 - 49
  • [9] A Study of the Shear Behavior of Concrete Beams with Synthetic Fibers Reinforced with Glass and Basalt Fiber-Reinforced Polymer Bars
    Duarte, Isabela Oliveira
    Forti, Nadia Cazarim da Silva
    Pimentel, Lia Lorena
    Jacintho, Ana Elisabete Paganelli Guimaraes de Avila
    BUILDINGS, 2024, 14 (07)
  • [10] Prediction of shear behavior of steel fiber-reinforced rubberized concrete beams reinforced with glass fiber-reinforced polymer (GFRP) bars
    Hosseini, Seyyed-Asgar
    Nematzadeh, Mahdi
    Chastre, Carlos
    COMPOSITE STRUCTURES, 2021, 256