RNA foldings, oriented stuck knots, and state sum invariants

被引:1
|
作者
Ceniceros, Jose [1 ]
Elhamdadi, Mohamed [2 ]
Magill, Brendan [1 ]
Rosario, Gabriana [1 ]
机构
[1] Hamilton Coll, Clinton, NY 13323 USA
[2] Univ S Florida, Tampa, FL 33620 USA
关键词
D O I
10.1063/5.0140652
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We extend the quandle cocycle invariant to the context of stuck links. More precisely, we define an invariant of stuck links by assigning Boltzmann weights at both classical and stuck crossings. As an application, we define a single-variable and a two-variable polynomial invariant of stuck links. Furthermore, we define a single-variable and two-variable polynomial invariant of arc diagrams of RNA foldings. We provide explicit computations of the new invariants.
引用
收藏
页数:17
相关论文
共 22 条
  • [1] RNA FOLDINGS AND STUCK KNOTS
    Ceniceros, Jose
    Elhamdadi, Mohamed
    Komissar, Josef
    Lahrani, Hitakshi
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 39 (01): : 223 - 245
  • [2] Cocycle Invariants and Oriented Singular Knots
    Ceniceros, Jose
    Churchill, Indu R.
    Elhamdadi, Mohamed
    Hajij, Mustafa
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (05)
  • [3] Cocycle Invariants and Oriented Singular Knots
    Jose Ceniceros
    Indu R. Churchill
    Mohamed Elhamdadi
    Mustafa Hajij
    Mediterranean Journal of Mathematics, 2021, 18
  • [4] Genera, band sum of knots and Vassiliev invariants
    Plachta, Leonid
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (15) : 2880 - 2887
  • [5] Oriented quantum algebras and invariants of knots and links
    Kauffman, LH
    Radford, DE
    JOURNAL OF ALGEBRA, 2001, 246 (01) : 253 - 291
  • [6] A SMALL STATE SUM FOR KNOTS
    FIEDLER, T
    TOPOLOGY, 1993, 32 (02) : 281 - 294
  • [7] Oriented quantum algebras, categories and invariants of knots and links
    Kauffman, L
    Radford, DE
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2001, 10 (07) : 1047 - 1084
  • [8] State invariants of 2-bridge knots
    Curtis, Cynthia L.
    Longo, Vincent
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2018, 27 (02)
  • [9] Oriented Quantum Algebras and Coalgebras, Invariants of Oriented 1-1 Tangles, Knots and Links
    Kauffman, Louis
    Radford, David E.
    CROSS DISCIPLINARY ADVANCES IN QUANTUM COMPUTING, 2011, 536 : 95 - 132
  • [10] The State-Sum Invariants for Virtual Knot
    Kazakov, A. A.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (12) : 5286 - 5293