Novel variable precision fuzzy rough sets and three-way decision model with three strategies

被引:19
|
作者
Zou, Dandan [1 ]
Xu, Yaoliang [1 ]
Li, Lingqiang [1 ]
Ma, Zhenming [2 ]
机构
[1] Liaocheng Univ, Dept Math, Liaocheng 252059, Peoples R China
[2] Linyi Univ, Sch Math & Stat, Linyi 276005, Peoples R China
基金
中国国家自然科学基金;
关键词
Variable precision; Three-way decision; Fuzzy information system; Comparable property; Fuzzy rough sets; CRITERIA;
D O I
10.1016/j.ins.2023.01.141
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Variable precision (fuzzy) rough sets are interesting generalizations of Pawlak rough sets and can handle uncertain and imprecise information well due to their error tolerance capability. The comparable property (CP for short), i.e., the lower approximation is included in the upper approximation, is fundamental in Pawlak rough sets since many theories and applications rely on this property. However, the CP is lost in many existing variable precision (fuzzy) rough sets. Therefore, a novel variable precision fuzzy rough set model with CP is proposed and an associated three-way decision model is developed. Firstly, a pair of variable precision fuzzy upper and lower approximation operators are defined and studied through fuzzy implication and co-implication operators. We show that this pair of approximation operators satisfy various properties (including CP) that the existing variable precision fuzzy approximation operators do not possess. Secondly, new methods for constructing loss functions and conditional probabilities are given by using CP, and then a new three-way decision model with three strategies (optimistic, pessimistic, and compromise strategies) is established. Finally, an explanatory example is provided to examine validity, stability and sensitivity of the proposed three-way decision model.
引用
收藏
页码:222 / 248
页数:27
相关论文
共 50 条
  • [1] Uncertainty and reduction of variable precision multigranulation fuzzy rough sets based on three-way decisions
    Feng, Tao
    Fan, Hui-Tao
    Mi, Ju-Sheng
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 85 : 36 - 58
  • [2] Constructing Three-Way Decision of Rough Fuzzy Sets from the Perspective of Uncertainties
    Yang, Jie
    Wang, Xiaoqi
    Wang, Guoyin
    Xia, Deyou
    COGNITIVE COMPUTATION, 2024, 16 (05) : 2454 - 2470
  • [3] Hesitant fuzzy three-way decision method based on soft rough sets
    Feng F.
    Wan Z.
    Xu Z.-S.
    Liu X.-Y.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (03): : 834 - 842
  • [4] Actionable Strategies in Three-Way Decisions with Rough Sets
    Gao, Cong
    Yao, Yiyu
    ROUGH SETS, IJCRS 2017, PT II, 2017, 10314 : 183 - 199
  • [5] A Novel Three-way decision model with decision-theoretic rough sets using utility theory
    Zhang, Qinghua
    Xie, Qin
    Wang, Guoyin
    KNOWLEDGE-BASED SYSTEMS, 2018, 159 : 321 - 335
  • [6] A three-way decision model associated with decision-theoretic rough fuzzy sets based on computing with words
    Wang, Ning
    Zhu, Ping
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (01) : 285 - 304
  • [7] A Novel Bipolar MCDM Model Using Rough Sets and Three-Way Decisions for Decision Aids
    Shen, Kao-Yi
    Tzeng, Gwo-Hshiung
    2016 JOINT 8TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING AND INTELLIGENT SYSTEMS (SCIS) AND 17TH INTERNATIONAL SYMPOSIUM ON ADVANCED INTELLIGENT SYSTEMS (ISIS), 2016, : 53 - 58
  • [8] A three-way decision combining multi-granularity variable precision fuzzy rough set and TOPSIS method
    Jia, Chengzhao
    Li, Lingqiang
    Li, Xinru
    International Journal of Approximate Reasoning, 2025, 176
  • [9] A sequential three-way decision model based on hesitant fuzzy sets
    Zhang, Mo
    Zhang, Qinghua
    Gao, Man
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (05) : 9073 - 9084
  • [10] Three-way decision models based on multigranulation support intuitionistic fuzzy rough sets
    Xue, Zhan'ao
    Zhao, Liping
    Sun, Lin
    Zhang, Min
    Xue, Tianyu
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2020, 124 : 147 - 172