Prediction of survival in out-of-hospital cardiac arrest: the updated Swedish cardiac arrest risk score (SCARS) model

被引:1
|
作者
Sultanian, Pedram [1 ]
Lundgren, Peter [1 ,2 ]
Louca, Antros [1 ]
Andersson, Erik [1 ]
Djarv, Therese [3 ]
Hessulf, Fredrik [4 ,5 ]
Henningsson, Anna [4 ,5 ]
Martinsson, Andreas [1 ,2 ]
Nordberg, Per [6 ,7 ]
Piasecki, Adam [4 ,5 ]
Gupta, Vibha [1 ]
Mandalenakis, Zacharias [1 ,2 ]
Taha, Amar [1 ,2 ]
Redfors, Bengt [1 ]
Herlitz, Johan [1 ,8 ]
Rawshani, Araz [1 ,2 ,8 ]
机构
[1] Univ Gothenburg, Sahlgrenska Univ Hosp, Inst Med, Dept Mol & Clin Med,Wallenberg Lab, Bla Straket 5, S-41345 Gothenburg, Sweden
[2] Sahlgrens Univ Hosp, Dept Cardiol, Bla Straket 5, S-41345 Gothenburg, Sweden
[3] Karolinska Inst, Dept Clin Med, Med Solna, Framstegsgatan, S-17164 Solna, Sweden
[4] Sahlgrens Univ Hosp, Dept Anesthesiol & Intens Care, Bla Straket 5, S-41345 Gothenburg, Sweden
[5] Univ Gothenburg, Inst Clin Sci, Sahlgrenska Acad, Dept Anaesthesiol & Intens Care, Bla Straket 5, S-41345 Gothenburg, Sweden
[6] Karolinska Inst, Ctr Resuscitat Sci, Dept Clin Sci & Educ, Sodersjukhuset, Jagargatan 20,Staircase 1, S-17177 Stockholm, Sweden
[7] Karolinska Univ Hosp, Funct Perioperat Med & Intens Care, Tomtebodavagen 18, S-17176 Stockholm, Sweden
[8] Swedish Registry Cardiopulm Resuscitat, Medicinaregatan 18G, S-41390 Gothenburg, Sweden
来源
关键词
Out-of-hospital cardiac arrest; Machine learning; Extreme gradient boosting; LightGBM; CARDIOPULMONARY-RESUSCITATION; ASSOCIATION; GUIDELINES;
D O I
10.1093/ehjdh/ztae016
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aims Out-of-hospital cardiac arrest (OHCA) is a major health concern worldwide. Although one-third of all patients achieve a return of spontaneous circulation and may undergo a difficult period in the intensive care unit, only 1 in 10 survive. This study aims to improve our previously developed machine learning model for early prognostication of survival in OHCA.Methods and results We studied all cases registered in the Swedish Cardiopulmonary Resuscitation Registry during 2010 and 2020 (n = 55 615). We compared the predictive performance of extreme gradient boosting (XGB), light gradient boosting machine (LightGBM), logistic regression, CatBoost, random forest, and TabNet. For each framework, we developed models that optimized (i) a weighted F1 score to penalize models that yielded more false negatives and (ii) a precision-recall area under the curve (PR AUC). LightGBM assigned higher importance values to a larger set of variables, while XGB made predictions using fewer predictors. The area under the curve receiver operating characteristic (AUC ROC) scores for LightGBM were 0.958 (optimized for weighted F1) and 0.961 (optimized for a PR AUC), while for XGB, the scores were 0.958 and 0.960, respectively. The calibration plots showed a subtle underestimation of survival for LightGBM, contrasting with a mild overestimation for XGB models. In the crucial range of 0-10% likelihood of survival, the XGB model, optimized with the PR AUC, emerged as a clinically safe model.Conclusion We improved our previous prediction model by creating a parsimonious model with an AUC ROC at 0.96, with excellent calibration and no apparent risk of underestimating survival in the critical probability range (0-10%). The model is available at www.gocares.se. Graphical Abstract
引用
收藏
页码:270 / 277
页数:8
相关论文
共 50 条
  • [1] The cardiac arrest survival score: A predictive algorithm for in-hospital mortality after out-of-hospital cardiac arrest
    Balan, Prakash
    Hsi, Brian
    Thangam, Manoj
    Zhao, Yelin
    Monlezun, Dominique
    Arain, Salman
    Charitakis, Konstantinos
    Dhoble, Abhijeet
    Johnson, Nils
    Anderson, H. Vernon
    Persse, David
    Warner, Mark
    Ostermayer, Daniel
    Prater, Samuel
    Wang, Henry
    Doshi, Pratik
    [J]. RESUSCITATION, 2019, 144 : 46 - 53
  • [2] The CAHP (Cardiac Arrest Hospital Prognosis) score: a tool for risk stratification after out-of-hospital cardiac arrest
    Maupain, Carole
    Bougouin, Wulfran
    Lamhaut, Lionel
    Deye, Nicolas
    Diehl, Jean-Luc
    Geri, Guillaume
    Perier, Marie-Cecile
    Beganton, Frankie
    Marijon, Eloi
    Jouven, Xavier
    Cariou, Alain
    Dumas, Florence
    [J]. EUROPEAN HEART JOURNAL, 2016, 37 (42) : 3222 - 3228
  • [3] Comorbidity and survival in out-of-hospital cardiac arrest
    Hirlekar, Geir
    Jonsson, Martin
    Karlsson, Thomas
    Hollenberg, Jacob
    Albertsson, Per
    Herlitz, Johan
    [J]. RESUSCITATION, 2018, 133 : 118 - 123
  • [4] VALIDATION OF THE CARDIAC ARREST SURVIVAL SCORE IN AN URBAN POPULATION OF OUT-OF-HOSPITAL CARDIAC ARRESTS
    Aggarwal, Arjun
    Thangam, Manoj
    Soneji, Nisha
    Saghir, Nabeel
    Escott, Mark
    Balan, Prakash
    Doshi, Pratik
    Monteleone, Peter
    Cauthen, Clay
    Rodgers, George
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2021, 77 (18) : 1144 - 1144
  • [5] Hospital variability of out-of-hospital cardiac arrest survival
    Liu, J. Marc
    Yang, Qing
    Pirrallo, Ronald G.
    Klein, John P.
    Aufderheide, Tom P.
    [J]. PREHOSPITAL EMERGENCY CARE, 2008, 12 (03) : 339 - 346
  • [6] Out-of-hospital cardiac arrest
    Porzer, Martin
    Mrazkova, Eva
    Homza, Miroslav
    Janout, Vladimir
    [J]. BIOMEDICAL PAPERS-OLOMOUC, 2017, 161 (04): : 348 - 353
  • [7] Out-of-hospital cardiac arrest
    Meyer, ADM
    Cameron, PA
    Smith, KL
    McNeil, JJ
    Mcneil, JJ
    [J]. MEDICAL JOURNAL OF AUSTRALIA, 2000, 172 (02) : 73 - 76
  • [8] Out-of-hospital cardiac arrest
    Gurrea, DJFB
    [J]. REVISTA ESPANOLA DE CARDIOLOGIA, 2002, 55 (03): : 319 - 320
  • [9] Out-of-Hospital Cardiac Arrest
    Gerecht, Ryan B.
    Nable, Jose, V
    [J]. EMERGENCY MEDICINE CLINICS OF NORTH AMERICA, 2023, 41 (03) : 433 - 453
  • [10] Out-of-Hospital Cardiac Arrest
    Boyd, Tanner S.
    Perina, Debra G.
    [J]. EMERGENCY MEDICINE CLINICS OF NORTH AMERICA, 2012, 30 (01) : 13 - +