An algebraic projection procedure for construction of the basis vectors of irreducible representations of U(4) in the SuS(2)⊗suT(2) basis

被引:0
|
作者
Pan, Feng [1 ,2 ]
Wu, Yingxin [1 ]
Li, Aoxue [1 ]
Zhang, Yuqing [1 ]
Dai, Lianrong [3 ]
Draayer, J. P. [2 ]
机构
[1] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[3] Huzhou Univ, Sch Sci, Dept Phys, Huzhou 313000, Zhejiang, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2023年 / 138卷 / 07期
基金
中国国家自然科学基金;
关键词
NUCLEAR SHELL-MODEL; CANONICAL ORTHONORMAL BASIS; COLLECTIVE MOTION; RACAH COEFFICIENTS; MATRIX-ELEMENTS; COHERENT STATES; WIGNER; SYMMETRY; SUPERSET; ISOSPIN;
D O I
10.1140/epjp/s13360-023-04261-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An effective algebraic spin-isospin projection procedure for constructing basis vectors of irreducible representations of U(4)superset of SUS(2)circle times SUT(2) from those in the canonical U(4)superset of U(3)superset of U(2)superset of U(1) basis is proposed. It is shown that the expansion coefficients are components of null space vectors of the spin-isospin projection matrix. Explicit formulae for evaluating SUS(2)circle times SUT(2) reduced matrix elements of U(4) generators are derived. Hence, matrix representations of U(4) in the noncanonical SUS(2)circle times SUT(2) basis are determined completely.
引用
收藏
页数:22
相关论文
共 27 条