Buffon's problem determines Gaussian curvature in three geometries

被引:0
|
作者
Abelgas, Aizelle [1 ]
Carrillo, Bryan [2 ]
Palacios, John [3 ]
Weisbart, David [1 ,4 ]
Yassine, Adam M.
机构
[1] Univ Calif Riverside, Dept Math, 900 Univ Ave,Skye Hall, Riverside, CA 92521 USA
[2] Saddleback Coll, Dept Math, 28000 Marguerite Pkwy, Mission Viejo, CA 92692 USA
[3] Univ Calif Irvine, Ctr Complex Biol Syst, 2620 Biol Sci 3, Irvine, CA 92697 USA
[4] Pomona Coll, Dept Math & Stat, 610 N Coll Ave, Claremont, CA 91711 USA
关键词
Buffon's problem; Gaussian curvature; area deficit; circumference deficit; Bertrand-Diguet-Puiseux theorem; geometric probability;
D O I
10.1017/jpr.2023.114
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A version of the classical Buffon problem in the plane naturally extends to the setting of any Riemannian surface with constant Gaussian curvature. The Buffon probability determines a Buffon deficit. The relationship between Gaussian curvature and the Buffon deficit is similar to the relationship that the Bertrand-Diguet-Puiseux theorem establishes between Gaussian curvature and both circumference and area deficits.
引用
收藏
页数:12
相关论文
共 50 条