Spatio-temporal prediction for distributed PV generation system based on deep learning neural network model

被引:4
|
作者
Dai, Qiangsheng [1 ]
Huo, Xuesong [1 ]
Hao, Yuchen [1 ]
Yu, Ruiji [2 ]
机构
[1] State Grid Jiangsu Elect Power Co Ltd, Nanjing, Peoples R China
[2] State Grid Xuzhou Power Supply Co Jiangsu Elect Po, Nanjing, Peoples R China
关键词
CNN-LSTM; spatio-temporal; deep learning; distributed PV generation system; PV prediction; CNN-LSTM; POWER;
D O I
10.3389/fenrg.2023.1204032
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
To obtain higher accuracy of PV prediction to enhance PV power generation technology. This paper proposes a spatio-temporal prediction method based on a deep learning neural network model. Firstly, spatio-temporal correlation analysis is performed for 17 PV sites. Secondly, we compare CNN-LSTM with a single CNN or LSTM model trained on the same dataset. From the evaluation indexes such as loss map, regression map, RMSE, and MAE, the CNN-LSTM model that considers the strong correlation of spatio-temporal correlation among the 17 sites has better performance. The results show that our method has higher prediction accuracy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Porosity prediction using a deep learning method based on bidirectional spatio-temporal neural network
    Wang, Jun
    Cao, Junxing
    Yuan, Shan
    Xu, Hanqing
    Zhou, Peng
    JOURNAL OF APPLIED GEOPHYSICS, 2024, 228
  • [2] A spatio-temporal network for human activity prediction based on deep learning
    Li J.
    Liu H.
    Guo W.
    Chen X.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (04): : 522 - 531
  • [3] A spatio-temporal network for landslide displacement prediction based on deep learning
    Luo H.
    Jiang Y.
    Xu Q.
    Liao L.
    Yan A.
    Liu C.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (10): : 2160 - 2170
  • [4] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Hui Zeng
    Zhiying Peng
    XiaoHui Huang
    Yixue Yang
    Rong Hu
    Applied Intelligence, 2022, 52 : 10285 - 10296
  • [5] A Deep Spatio-temporal Attention-based Neural Network for Passenger Flow Prediction
    Cui, Yanling
    Jin, Beihong
    Zhang, Fusang
    Sun, Xingwu
    PROCEEDINGS OF THE 16TH EAI INTERNATIONAL CONFERENCE ON MOBILE AND UBIQUITOUS SYSTEMS: COMPUTING, NETWORKING AND SERVICES (MOBIQUITOUS'19), 2019, : 20 - 30
  • [6] Deep spatio-temporal neural network based on interactive attention for traffic flow prediction
    Zeng, Hui
    Peng, Zhiying
    Huang, XiaoHui
    Yang, Yixue
    Hu, Rong
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10285 - 10296
  • [7] Deep Learning Model for Global Spatio-Temporal Image Prediction
    Nikezic, Dusan P.
    Ramadani, Uzahir R.
    Radivojevic, Dusan S.
    Lazovic, Ivan M.
    Mirkov, Nikola S.
    MATHEMATICS, 2022, 10 (18)
  • [8] Radar Echo Extrapolation Model Based on Deep Spatio-Temporal Fusion Neural Network
    Fang W.
    Pang L.
    Yi W.-N.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (09): : 2526 - 2538
  • [9] Metro Passenger Flow Prediction Based on Dynamic Spatio-temporal Neural Network Model
    Shi J.-Q.
    Li R.
    Cheng M.-H.
    Ruan J.-H.
    Xie X.
    Jiaotong Yunshu Xitong Gongcheng Yu Xinxi/Journal of Transportation Systems Engineering and Information Technology, 2023, 23 (02): : 139 - 147
  • [10] Co-Prediction of Multiple Transportation Demands Based on Deep Spatio-Temporal Neural Network
    Ye, Junchen
    Sun, Leilei
    Du, Bowen
    Fu, Yanjie
    Tong, Xinran
    Xiong, Hui
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 305 - 313