An effective adaptive algorithm for linear fractional dynamical systems

被引:2
|
作者
Bu, Weiping [1 ,2 ]
Qu, Min [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
关键词
Fractional dynamical systems; time-stepping L(1)approximation; a posteriori error estimation; adaptive algorithm; ERROR ANALYSIS; DIFFERENCE SCHEME; GRADED MESHES; EQUATIONS;
D O I
10.1142/S1793962324500053
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This study proposes a time-stepping L-1 scheme to approximate the linear fractional dynamical systems based on nonuniform mesh. The developed numerical scheme is unconditionally stable, and exhibits second-order accuracy when the suitable graded mesh is used. A posteriori error estimation is derived for the obtained numerical scheme and the corresponding adaptive algorithm is devised. Finally, two numerical examples are provided to demonstrate the effectiveness of our approach and verify the theoretical results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Note on controllability of linear fractional dynamical systems
    Balachandran K.
    Matar M.
    Trujillo J.J.
    Balachandran, K. (kb.maths.bu@gmail.com), 1600, Taylor and Francis Ltd. (03): : 267 - 279
  • [2] AN ADAPTIVE CONTROL ALGORITHM FOR LINEAR SYSTEMS
    PEARSON, AE
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1969, AC14 (05) : 497 - +
  • [3] Fractional–Linear Transformations of Operator Balls; Applications to Dynamical Systems
    V. A. Khatskevich
    V. A. Senderov
    Acta Mathematica Sinica, 2006, 22 : 1687 - 1694
  • [4] Analysis of the fractional descriptor linear systems by the decomposition into the dynamical and static
    Kaczorek, Tadeusz
    Sajewski, Lukasz
    ARCHIVES OF CONTROL SCIENCES, 2024, 34 (04): : 743 - 753
  • [5] Linear fractional P-ADIC and adelic dynamical systems
    Dragovich, Branko
    Khrennikov, Andrei
    Mihajlovic, Dusan
    REPORTS ON MATHEMATICAL PHYSICS, 2007, 60 (01) : 55 - 68
  • [6] Controllability, observability, and stability of φ-conformable fractional linear dynamical systems
    Sadek, Lakhlifa
    ASIAN JOURNAL OF CONTROL, 2024, 26 (05) : 2476 - 2494
  • [7] Controllability of non-linear implicit fractional dynamical systems
    Balachandran, K.
    Kokila, J.
    IMA JOURNAL OF APPLIED MATHEMATICS, 2014, 79 (03) : 562 - 570
  • [8] Adaptive Algorithm of Parametric Synthesis of Hybrid Dynamical Systems
    Andreichenko, D. K.
    Andreichenko, K. P.
    Melnichuk, D., V
    Portenko, M. S.
    IZVESTIYA SARATOVSKOGO UNIVERSITETA NOVAYA SERIYA-MATEMATIKA MEKHANIKA INFORMATIKA, 2016, 16 (04): : 465 - 475
  • [9] A Genetic Algorithm Approach for Prediction of Linear Dynamical Systems
    Abo-Hammour, Za'er
    Alsmadi, Othman
    Momani, Shaher
    Abu Arqub, Omar
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [10] An Effective Branch and Bound Algorithm for Minimax Linear Fractional Programming
    Jiao, Hong-Wei
    Wang, Feng-Hui
    Chen, Yong-Qiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,