County-level socio-environmental factors and obesity prevalence in the United States

被引:0
|
作者
Salerno, Pedro R. V. O. [1 ,2 ]
Qian, Alice [3 ]
Dong, Weichuan [4 ]
Deo, Salil [2 ,5 ]
Nasir, Khurram [6 ]
Rajagopalan, Sanjay [1 ,2 ]
Al-Kindi, Sadeer [6 ,7 ]
机构
[1] Univ Hosp Cleveland Med Ctr, Harrington Heart & Vasc Inst, Cleveland, OH USA
[2] Case Western Reserve Univ, Cleveland, OH 44106 USA
[3] Case Western Reserve Univ, Sch Med, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Sch Med, Dept Populat & Quantitat Hlth Sci, Cleveland, OH 44106 USA
[5] Louis Stokes VA Med Ctr, Surg Serv, Cleveland, OH USA
[6] Houston Methodist DeBakey Heart & Vasc Ctr, Cardiovasc Prevent & Wellness, Houston, TX USA
[7] Case Western Reserve Univ, Univ Hosp, Sch Med, Harrington Heart & Vasc Inst, 11100 Euclid Ave, Cleveland, OH 44106 USA
来源
DIABETES OBESITY & METABOLISM | 2024年 / 26卷 / 05期
关键词
machine learning; obesity prevalence; public health; METABOLIC COMPLICATIONS; FOOD INSECURITY; ADULTS; HEALTH; DETERMINANTS; DISPARITIES;
D O I
10.1111/dom.15488
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
AimsTo investigate high-risk sociodemographic and environmental determinants of health (SEDH) potentially associated with adult obesity in counties in the United States using machine-learning techniques.Materials and MethodsWe performed a cross-sectional analysis of county-level adult obesity prevalence (body mass index >= 30 kg/m2) in the United States using data from the Diabetes Surveillance System 2017. We harvested 49 county-level SEDH factors that were used in a classification and regression trees (CART) model to identify county-level clusters. The CART model was validated using a 'hold-out' set of counties and variable importance was evaluated using Random Forest.ResultsOverall, we analysed 2752 counties in the United States, identifying a national median (interquartile range) obesity prevalence of 34.1% (30.2%, 37.7%). The CART method identified 11 clusters with a 60.8% relative increase in prevalence across the spectrum. Additionally, seven key SEDH variables were identified by CART to guide the categorization of clusters, including Physically Inactive (%), Diabetes (%), Severe Housing Problems (%), Food Insecurity (%), Uninsured (%), Population over 65 years (%) and Non-Hispanic Black (%).ConclusionThere is significant county-level geographical variation in obesity prevalence in the United States, which can in part be explained by complex SEDH factors. The use of machine-learning techniques to analyse these factors can provide valuable insights into the importance of these upstream determinants of obesity and, therefore, aid in the development of geo-specific strategic interventions and optimize resource allocation to help battle the obesity pandemic.
引用
收藏
页码:1766 / 1774
页数:9
相关论文
共 50 条
  • [1] County-Level Socio-Environmental Factors Associated With Stroke Mortality in the United States: A Cross-Sectional Study
    Salerno, Pedro
    Motairek, Issam
    Dong, Weichuan
    Nasir, Khurram
    Fotedar, Neel
    Omran, Setareh
    Ganatra, Sarju
    Hahad, Omar
    Deo, Salil
    Rajagopalan, Sanjay
    Al-Kindi, Sadeer
    [J]. ANGIOLOGY, 2024,
  • [2] Alzheimer`s disease mortality in the United States: Cross-sectional analysis of county-level socio-environmental factors
    Salerno, Pedro R. V. O.
    Dong, Weichuan
    Motairek, Issam
    Makhlouf, Mohamed H. E.
    Saifudeen, Mehlam
    Moorthy, Skanda
    Dalton, Jarrod E.
    Perzynski, Adam T.
    Rajagopalan, Sanjay
    Al-Kindi, Sadeer
    [J]. ARCHIVES OF GERONTOLOGY AND GERIATRICS, 2023, 115
  • [3] Is gastroschisis associated with county-level socio-environmental quality during pregnancy?
    Krajewski, Alison K.
    Patel, Achal
    Gray, Christine L.
    Messer, Lynne C.
    Keeler, Corinna Y.
    Langlois, Peter H.
    Reefhuis, Jennita
    Gilboa, Suzanne M.
    Werler, Martha M.
    Shaw, Gary M.
    Carmichael, Suzan L.
    Nembhard, Wendy N.
    Insaf, Tabassum Z.
    Feldkamp, Marcia L.
    Conway, Kristin M.
    Lobdell, Danelle T.
    Desrosiers, Tania A.
    Natl Birth Defects Prevention Study
    [J]. BIRTH DEFECTS RESEARCH, 2023, 115 (18): : 1758 - 1769
  • [4] County-level prevalence estimates of ADHD in children in the United States
    Zgodic, Anja
    McLain, Alexander C.
    Eberth, Jan M.
    Federico, Alexis
    Bradshaw, Jessica
    Flory, Kate
    [J]. ANNALS OF EPIDEMIOLOGY, 2023, 79 : 56 - 64
  • [5] County-level factors underlying opioid mortality in the United States
    Langabeer, James R.
    Chambers, Kimberly A.
    Cardenas-Turanzas, Marylou
    Champagne-Langabeer, Tiffany
    [J]. SUBSTANCE ABUSE, 2022, 43 (01) : 76 - 82
  • [6] The Hispanic Paradox in County-level Obesity Prevalence
    Valencia, Areli
    Zuma, Bongeka Z.
    Knight, Gabriel M.
    Scheinker, David
    Sarraju, Ashish
    Rodriguez, Fatima
    [J]. CIRCULATION, 2019, 140
  • [7] The Hispanic paradox in the prevalence of obesity at the county-level
    Valencia, Areli
    Zuma, Bongeka Z.
    Spencer-Bonilla, Gabriela
    Lopez, Lenny
    Scheinker, David
    Rodriguez, Fatima
    [J]. OBESITY SCIENCE & PRACTICE, 2021, 7 (01): : 14 - 24
  • [8] County-level factors affecting Latino HIV disparities in the United States
    Benbow, Nanette D.
    Aaby, David A.
    Rosenberg, Eli S.
    Brown, C. Hendricks
    [J]. PLOS ONE, 2020, 15 (08):
  • [9] County-level contextual factors associated with diabetes incidence in the United States
    Cunningham, Solveig A.
    Patel, Shivani A.
    Beckles, Gloria L.
    Geiss, Linda S.
    Mehta, Neil
    Xie, Hui
    Imperatore, Giuseppina
    [J]. ANNALS OF EPIDEMIOLOGY, 2018, 28 (01) : 20 - 25
  • [10] County-Level Prevalence Estimates of Autism Spectrum Disorder in Children in the United States
    Bradshaw, Jessica
    Eberth, Jan M.
    Zgodic, Anja
    Federico, Alexis
    Flory, Kate
    McLain, Alexander C.
    [J]. JOURNAL OF AUTISM AND DEVELOPMENTAL DISORDERS, 2024, 54 (07) : 2710 - 2718