Unsupervised Concept Drift Detectors: A Survey

被引:1
|
作者
Shen, Pei [1 ]
Ming, Yongjie [1 ]
Li, Hongpeng [1 ]
Gao, Jingyu [2 ]
Zhang, Wanpeng [2 ]
机构
[1] HBIS Digital Technol Co Ltd, Shijiazhuang 050022, Hebei, Peoples R China
[2] Xidian Univ, Sch Comp Sci & Technol, Xian, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Concept drift; Data streams; Unsupervised detector; Survey;
D O I
10.1007/978-3-031-20738-9_121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Concept drift mainly refers to the change of the current data distribution in the data streams due to the dynamic evolution of the external environment, which leads to the failure of machine learning or data mining models to show the desired effect. As a result, the forecast or decision model needs to be constantly updated. To find the appropriate time for model updating, a large number of studies have proposed methods for detecting concept drift, which can be divided into supervised detection methods and unsupervised detection methods. Because an unsupervised concept drift detector does not make strong assumptions about the availability of data annotations for real application scenarios, it has more robust availability and generality, and there is less summary work related to unsupervised detectors. Therefore, in this paper, we will summarize all the existing unsupervised concept drift detection methods and give a new classification basis to classify the unsupervised concept drift detection methods.
引用
收藏
页码:1117 / 1124
页数:8
相关论文
共 50 条
  • [1] A benchmark and survey of fully unsupervised concept drift detectors on real-world data streams
    Lukats, Daniel
    Zielinski, Oliver
    Hahn, Axel
    Stahl, Frederic
    INTERNATIONAL JOURNAL OF DATA SCIENCE AND ANALYTICS, 2024, : 1 - 31
  • [2] A comparative study on concept drift detectors
    Goncalves, Paulo M., Jr.
    de Carvalho Santos, Silas G. T.
    Barros, Roberto S. M.
    Vieira, Davi C. L.
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (18) : 8144 - 8156
  • [3] Unsupervised Concept Drift Detection with a Discriminative Classifier
    Gozuacik, Omer
    Buyukcakir, Alican
    Bonab, Hamed
    Can, Fazli
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2365 - 2368
  • [4] A Survey on Concept Drift Adaptation
    Gama, Joao
    Zliobaite, Indre
    Bifet, Albert
    Pechenizkiy, Mykola
    Bouchachia, Abdelhamid
    ACM COMPUTING SURVEYS, 2014, 46 (04)
  • [5] Unsupervised Tuning for Drift Detectors Using Change Detector Segmentation
    Silva, Ricardo Petri
    Junior, Sylvio Barbon
    Zarpelao, Bruno Bogaz
    De Melo, Leonimer Flavio
    IEEE ACCESS, 2024, 12 : 54256 - 54271
  • [6] Unsupervised Domain Adaptation of Object Detectors: A Survey
    Oza, Poojan
    Sindagi, Vishwanath A.
    Vibashan, V. S.
    Patel, Vishal M.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (06) : 4018 - 4040
  • [7] An empirical insight into concept drift detectors ensemble strategies
    Lapinski, Andrzej
    Krawczyk, Bartosz
    Ksieniewicz, Pawel
    Wozniak, Michal
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1131 - 1138
  • [8] A large-scale comparison of concept drift detectors
    Maior Barros, Roberto Souto
    Carvalho Santos, Silas Garrido T.
    INFORMATION SCIENCES, 2018, 451 : 348 - 370
  • [9] Ensembles of Heterogeneous Concept Drift Detectors - Experimental Study
    Wozniak, Michal
    Ksieniewicz, Pawel
    Cyganek, Boguslaw
    Walkowiak, Krzysztof
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, CISIM 2016, 2016, 9842 : 538 - 549
  • [10] A Survey on Concept Drift in Process Mining
    Vecino Sato, Denise Maria
    De Freitas, Sheila Cristiana
    Barddal, Jean Paul
    Scalabrin, Edson Emilio
    ACM COMPUTING SURVEYS, 2022, 54 (09)